![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitri | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitri | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 3bitri.3 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
4 | 2, 3 | bitri 184 | . 2 ⊢ (𝜓 ↔ 𝜃) |
5 | 1, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi1i 228 an32 562 orbi1i 763 orass 767 or32 770 dcan 933 dn1dc 960 an6 1321 excxor 1378 trubifal 1416 truxortru 1419 truxorfal 1420 falxortru 1421 falxorfal 1422 alrot4 1486 excom13 1689 sborv 1890 3exdistr 1915 4exdistr 1916 eeeanv 1933 ee4anv 1934 ee8anv 1935 sb3an 1958 sb9 1979 sbnf2 1981 sbco4 2007 2exsb 2009 sb8eu 2039 sb8euh 2049 sbmo 2085 2eu4 2119 2eu7 2120 elsb1 2155 elsb2 2156 r19.26-3 2607 rexcom13 2643 cbvreu 2702 ceqsex2 2778 ceqsex4v 2781 spc3gv 2831 ralrab2 2903 rexrab2 2905 reu2 2926 rmo4 2931 reu8 2934 rmo3f 2935 sbc3an 3025 rmo3 3055 dfss2 3145 ss2rab 3232 rabss 3233 ssrab 3234 dfdif3 3246 undi 3384 undif3ss 3397 difin2 3398 dfnul2 3425 disj 3472 disjsn 3655 snssb 3726 uni0c 3836 ssint 3861 iunss 3928 ssextss 4221 eqvinop 4244 opcom 4251 opeqsn 4253 opeqpr 4254 brabsb 4262 opelopabf 4275 opabm 4281 pofun 4313 sotritrieq 4326 uniuni 4452 ordsucim 4500 opeliunxp 4682 xpiundi 4685 brinxp2 4694 ssrel 4715 reliun 4748 cnvuni 4814 dmopab3 4841 opelres 4913 elres 4944 elsnres 4945 intirr 5016 ssrnres 5072 dminxp 5074 dfrel4v 5081 dmsnm 5095 rnco 5136 sb8iota 5186 dffun2 5227 dffun4f 5233 funco 5257 funcnveq 5280 fun11 5284 isarep1 5303 dff1o4 5470 dff1o6 5777 oprabid 5907 mpo2eqb 5984 ralrnmpo 5989 rexrnmpo 5990 opabex3d 6122 opabex3 6123 xporderlem 6232 f1od2 6236 tfr0dm 6323 tfrexlem 6335 frec0g 6398 nnaord 6510 ecid 6598 mptelixpg 6734 elixpsn 6735 mapsnen 6811 xpsnen 6821 xpcomco 6826 xpassen 6830 exmidontriimlem3 7222 nqnq0 7440 opelreal 7826 pitoregt0 7848 elnn0 9178 elxnn0 9241 elxr 9776 xrnepnf 9778 elfzuzb 10019 4fvwrd4 10140 elfzo2 10150 resqrexlemsqa 11033 fisumcom2 11446 modfsummod 11466 fprodcom2fi 11634 nnwosdc 12040 isprm2 12117 isprm4 12119 pythagtriplem2 12266 isnsg2 13063 isnsg4 13072 ntreq0 13635 txbas 13761 metrest 14009 |
Copyright terms: Public domain | W3C validator |