Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitri | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitri | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 3bitri.3 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
4 | 2, 3 | bitri 183 | . 2 ⊢ (𝜓 ↔ 𝜃) |
5 | 1, 4 | bitri 183 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi1i 227 an32 552 orbi1i 753 orass 757 or32 760 dcan 923 dn1dc 950 an6 1311 excxor 1368 trubifal 1406 truxortru 1409 truxorfal 1410 falxortru 1411 falxorfal 1412 alrot4 1474 excom13 1677 sborv 1878 3exdistr 1903 4exdistr 1904 eeeanv 1921 ee4anv 1922 ee8anv 1923 sb3an 1946 sb9 1967 sbnf2 1969 sbco4 1995 2exsb 1997 sb8eu 2027 sb8euh 2037 sbmo 2073 2eu4 2107 2eu7 2108 elsb1 2143 elsb2 2144 r19.26-3 2596 rexcom13 2631 cbvreu 2690 ceqsex2 2766 ceqsex4v 2769 spc3gv 2819 ralrab2 2891 rexrab2 2893 reu2 2914 rmo4 2919 reu8 2922 rmo3f 2923 sbc3an 3012 rmo3 3042 dfss2 3131 ss2rab 3218 rabss 3219 ssrab 3220 dfdif3 3232 undi 3370 undif3ss 3383 difin2 3384 dfnul2 3411 disj 3457 disjsn 3638 uni0c 3815 ssint 3840 iunss 3907 ssextss 4198 eqvinop 4221 opcom 4228 opeqsn 4230 opeqpr 4231 brabsb 4239 opelopabf 4252 opabm 4258 pofun 4290 sotritrieq 4303 uniuni 4429 ordsucim 4477 opeliunxp 4659 xpiundi 4662 brinxp2 4671 ssrel 4692 reliun 4725 cnvuni 4790 dmopab3 4817 opelres 4889 elres 4920 elsnres 4921 intirr 4990 ssrnres 5046 dminxp 5048 dfrel4v 5055 dmsnm 5069 rnco 5110 sb8iota 5160 dffun2 5198 dffun4f 5204 funco 5228 funcnveq 5251 fun11 5255 isarep1 5274 dff1o4 5440 dff1o6 5744 oprabid 5874 mpo2eqb 5951 ralrnmpo 5956 rexrnmpo 5957 opabex3d 6089 opabex3 6090 xporderlem 6199 f1od2 6203 tfr0dm 6290 tfrexlem 6302 frec0g 6365 nnaord 6477 ecid 6564 mptelixpg 6700 elixpsn 6701 mapsnen 6777 xpsnen 6787 xpcomco 6792 xpassen 6796 exmidontriimlem3 7179 nqnq0 7382 opelreal 7768 pitoregt0 7790 elnn0 9116 elxnn0 9179 elxr 9712 xrnepnf 9714 elfzuzb 9954 4fvwrd4 10075 elfzo2 10085 resqrexlemsqa 10966 fisumcom2 11379 modfsummod 11399 fprodcom2fi 11567 nnwosdc 11972 isprm2 12049 isprm4 12051 pythagtriplem2 12198 ntreq0 12772 txbas 12898 metrest 13146 |
Copyright terms: Public domain | W3C validator |