| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
| 3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitri | ⊢ (𝜑 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 3bitri.3 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ (𝜓 ↔ 𝜃) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1i 228 an32 562 orbi1i 765 orass 769 or32 772 dn1dc 963 an6 1334 excxor 1398 trubifal 1436 truxortru 1439 truxorfal 1440 falxortru 1441 falxorfal 1442 alrot4 1510 excom13 1713 sborv 1915 3exdistr 1940 4exdistr 1941 eeeanv 1962 ee4anv 1963 ee8anv 1964 sb3an 1987 sb9 2008 sbnf2 2010 sbco4 2036 2exsb 2038 sb8eu 2068 sb8euh 2078 sbmo 2114 2eu4 2148 2eu7 2149 elsb1 2184 elsb2 2185 r19.26-3 2637 rexcom13 2673 cbvreu 2737 ceqsex2 2815 ceqsex4v 2818 spc3gv 2870 ralrab2 2942 rexrab2 2944 reu2 2965 rmo4 2970 reu8 2973 rmo3f 2974 sbc3an 3064 rmo3 3094 ssalel 3185 ss2rab 3273 rabss 3274 ssrab 3275 dfdif3 3287 undi 3425 undif3ss 3438 difin2 3439 dfnul2 3466 disj 3513 disjsn 3699 snssb 3771 uni0c 3881 ssint 3906 iunss 3973 ssextss 4271 eqvinop 4294 opcom 4302 opeqsn 4304 opeqpr 4305 brabsb 4314 opelopabf 4328 opabm 4334 pofun 4366 sotritrieq 4379 uniuni 4505 ordsucim 4555 opeliunxp 4737 xpiundi 4740 brinxp2 4749 ssrel 4770 reliun 4803 cnvuni 4871 dmopab3 4899 opelres 4972 elres 5003 elsnres 5004 intirr 5077 ssrnres 5133 dminxp 5135 dfrel4v 5142 dmsnm 5156 rnco 5197 sb8iota 5247 dffun2 5289 dffun4f 5295 funco 5319 funcnveq 5345 fun11 5349 isarep1 5368 dff1o4 5541 dff1o6 5857 oprabid 5988 mpo2eqb 6067 ralrnmpo 6072 rexrnmpo 6073 opabex3d 6218 opabex3 6219 xporderlem 6329 f1od2 6333 tfr0dm 6420 tfrexlem 6432 frec0g 6495 nnaord 6607 ecid 6697 mptelixpg 6833 elixpsn 6834 mapsnen 6916 xpsnen 6930 xpcomco 6935 xpassen 6939 exmidontriimlem3 7350 nqnq0 7569 opelreal 7955 pitoregt0 7977 elnn0 9312 elxnn0 9375 elxr 9913 xrnepnf 9915 elfzuzb 10156 4fvwrd4 10277 elfzo2 10287 swrdnd 11130 resqrexlemsqa 11405 fisumcom2 11819 modfsummod 11839 fprodcom2fi 12007 nnwosdc 12430 isprm2 12509 isprm4 12511 pythagtriplem2 12659 4sqlem12 12795 isnsg2 13609 isnsg4 13618 dfrhm2 13986 cnfldui 14421 ntreq0 14674 txbas 14800 metrest 15048 2lgslem4 15650 |
| Copyright terms: Public domain | W3C validator |