| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
| 3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitri | ⊢ (𝜑 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 3bitri.3 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ (𝜓 ↔ 𝜃) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1i 228 an32 562 orbi1i 768 orass 772 or32 775 dn1dc 966 an6 1355 excxor 1420 trubifal 1458 truxortru 1461 truxorfal 1462 falxortru 1463 falxorfal 1464 alrot4 1532 excom13 1735 sborv 1937 3exdistr 1962 4exdistr 1963 eeeanv 1984 ee4anv 1985 ee8anv 1986 sb3an 2009 sb9 2030 sbnf2 2032 sbco4 2058 2exsb 2060 sb8eu 2090 sb8euh 2100 sbmo 2137 2eu4 2171 2eu7 2172 elsb1 2207 elsb2 2208 r19.26-3 2661 rexcom13 2697 cbvreu 2763 ceqsex2 2841 ceqsex4v 2844 spc3gv 2896 ralrab2 2968 rexrab2 2970 reu2 2991 rmo4 2996 reu8 2999 rmo3f 3000 sbc3an 3090 reu8nf 3110 rmo3 3121 ssalel 3212 ss2rab 3300 rabss 3301 ssrab 3302 dfdif3 3314 undi 3452 undif3ss 3465 difin2 3466 dfnul2 3493 disj 3540 disjsn 3728 snssb 3800 uni0c 3913 ssint 3938 iunss 4005 ssextss 4305 eqvinop 4328 opcom 4336 opeqsn 4338 opeqpr 4339 brabsb 4348 opelopabf 4362 opabm 4368 pofun 4400 sotritrieq 4413 uniuni 4539 ordsucim 4589 opeliunxp 4771 xpiundi 4774 brinxp2 4783 ssrel 4804 reliun 4837 cnvuni 4905 dmopab3 4933 opelres 5006 elres 5037 elsnres 5038 intirr 5111 ssrnres 5167 dminxp 5169 dfrel4v 5176 dmsnm 5190 rnco 5231 sb8iota 5282 dffun2 5324 dffun4f 5330 funco 5354 funcnveq 5380 fun11 5384 isarep1 5403 dff1o4 5576 dff1o6 5893 oprabid 6026 mpo2eqb 6105 ralrnmpo 6110 rexrnmpo 6111 opabex3d 6256 opabex3 6257 xporderlem 6367 f1od2 6371 tfr0dm 6458 tfrexlem 6470 frec0g 6533 nnaord 6645 ecid 6735 mptelixpg 6871 elixpsn 6872 mapsnen 6954 xpsnen 6968 xpcomco 6973 xpassen 6977 exmidontriimlem3 7393 nqnq0 7616 opelreal 8002 pitoregt0 8024 elnn0 9359 elxnn0 9422 elxr 9960 xrnepnf 9962 elfzuzb 10203 4fvwrd4 10324 elfzo2 10334 swrdnd 11177 resqrexlemsqa 11521 fisumcom2 11935 modfsummod 11955 fprodcom2fi 12123 nnwosdc 12546 isprm2 12625 isprm4 12627 pythagtriplem2 12775 4sqlem12 12911 isnsg2 13726 isnsg4 13735 dfrhm2 14103 cnfldui 14538 ntreq0 14791 txbas 14917 metrest 15165 2lgslem4 15767 umgr2edg1 15992 |
| Copyright terms: Public domain | W3C validator |