Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitri | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitri | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 3bitri.3 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
4 | 2, 3 | bitri 183 | . 2 ⊢ (𝜓 ↔ 𝜃) |
5 | 1, 4 | bitri 183 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi1i 227 an32 557 orbi1i 758 orass 762 or32 765 dcan 928 dn1dc 955 an6 1316 excxor 1373 trubifal 1411 truxortru 1414 truxorfal 1415 falxortru 1416 falxorfal 1417 alrot4 1479 excom13 1682 sborv 1883 3exdistr 1908 4exdistr 1909 eeeanv 1926 ee4anv 1927 ee8anv 1928 sb3an 1951 sb9 1972 sbnf2 1974 sbco4 2000 2exsb 2002 sb8eu 2032 sb8euh 2042 sbmo 2078 2eu4 2112 2eu7 2113 elsb1 2148 elsb2 2149 r19.26-3 2600 rexcom13 2635 cbvreu 2694 ceqsex2 2770 ceqsex4v 2773 spc3gv 2823 ralrab2 2895 rexrab2 2897 reu2 2918 rmo4 2923 reu8 2926 rmo3f 2927 sbc3an 3016 rmo3 3046 dfss2 3136 ss2rab 3223 rabss 3224 ssrab 3225 dfdif3 3237 undi 3375 undif3ss 3388 difin2 3389 dfnul2 3416 disj 3462 disjsn 3643 uni0c 3820 ssint 3845 iunss 3912 ssextss 4203 eqvinop 4226 opcom 4233 opeqsn 4235 opeqpr 4236 brabsb 4244 opelopabf 4257 opabm 4263 pofun 4295 sotritrieq 4308 uniuni 4434 ordsucim 4482 opeliunxp 4664 xpiundi 4667 brinxp2 4676 ssrel 4697 reliun 4730 cnvuni 4795 dmopab3 4822 opelres 4894 elres 4925 elsnres 4926 intirr 4995 ssrnres 5051 dminxp 5053 dfrel4v 5060 dmsnm 5074 rnco 5115 sb8iota 5165 dffun2 5206 dffun4f 5212 funco 5236 funcnveq 5259 fun11 5263 isarep1 5282 dff1o4 5448 dff1o6 5752 oprabid 5882 mpo2eqb 5959 ralrnmpo 5964 rexrnmpo 5965 opabex3d 6097 opabex3 6098 xporderlem 6207 f1od2 6211 tfr0dm 6298 tfrexlem 6310 frec0g 6373 nnaord 6485 ecid 6572 mptelixpg 6708 elixpsn 6709 mapsnen 6785 xpsnen 6795 xpcomco 6800 xpassen 6804 exmidontriimlem3 7187 nqnq0 7390 opelreal 7776 pitoregt0 7798 elnn0 9124 elxnn0 9187 elxr 9720 xrnepnf 9722 elfzuzb 9962 4fvwrd4 10083 elfzo2 10093 resqrexlemsqa 10975 fisumcom2 11388 modfsummod 11408 fprodcom2fi 11576 nnwosdc 11981 isprm2 12058 isprm4 12060 pythagtriplem2 12207 ntreq0 12885 txbas 13011 metrest 13259 |
Copyright terms: Public domain | W3C validator |