![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitri | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitri | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 3bitri.3 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
4 | 2, 3 | bitri 184 | . 2 ⊢ (𝜓 ↔ 𝜃) |
5 | 1, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi1i 228 an32 562 orbi1i 764 orass 768 or32 771 dn1dc 962 an6 1332 excxor 1389 trubifal 1427 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 alrot4 1497 excom13 1700 sborv 1902 3exdistr 1927 4exdistr 1928 eeeanv 1949 ee4anv 1950 ee8anv 1951 sb3an 1974 sb9 1995 sbnf2 1997 sbco4 2023 2exsb 2025 sb8eu 2055 sb8euh 2065 sbmo 2101 2eu4 2135 2eu7 2136 elsb1 2171 elsb2 2172 r19.26-3 2624 rexcom13 2660 cbvreu 2724 ceqsex2 2800 ceqsex4v 2803 spc3gv 2853 ralrab2 2925 rexrab2 2927 reu2 2948 rmo4 2953 reu8 2956 rmo3f 2957 sbc3an 3047 rmo3 3077 dfss2 3168 ss2rab 3255 rabss 3256 ssrab 3257 dfdif3 3269 undi 3407 undif3ss 3420 difin2 3421 dfnul2 3448 disj 3495 disjsn 3680 snssb 3751 uni0c 3861 ssint 3886 iunss 3953 ssextss 4249 eqvinop 4272 opcom 4279 opeqsn 4281 opeqpr 4282 brabsb 4291 opelopabf 4305 opabm 4311 pofun 4343 sotritrieq 4356 uniuni 4482 ordsucim 4532 opeliunxp 4714 xpiundi 4717 brinxp2 4726 ssrel 4747 reliun 4780 cnvuni 4848 dmopab3 4875 opelres 4947 elres 4978 elsnres 4979 intirr 5052 ssrnres 5108 dminxp 5110 dfrel4v 5117 dmsnm 5131 rnco 5172 sb8iota 5222 dffun2 5264 dffun4f 5270 funco 5294 funcnveq 5317 fun11 5321 isarep1 5340 dff1o4 5508 dff1o6 5819 oprabid 5950 mpo2eqb 6028 ralrnmpo 6033 rexrnmpo 6034 opabex3d 6173 opabex3 6174 xporderlem 6284 f1od2 6288 tfr0dm 6375 tfrexlem 6387 frec0g 6450 nnaord 6562 ecid 6652 mptelixpg 6788 elixpsn 6789 mapsnen 6865 xpsnen 6875 xpcomco 6880 xpassen 6884 exmidontriimlem3 7283 nqnq0 7501 opelreal 7887 pitoregt0 7909 elnn0 9242 elxnn0 9305 elxr 9842 xrnepnf 9844 elfzuzb 10085 4fvwrd4 10206 elfzo2 10216 resqrexlemsqa 11168 fisumcom2 11581 modfsummod 11601 fprodcom2fi 11769 nnwosdc 12176 isprm2 12255 isprm4 12257 pythagtriplem2 12404 4sqlem12 12540 isnsg2 13273 isnsg4 13282 dfrhm2 13650 cnfldui 14077 ntreq0 14300 txbas 14426 metrest 14674 |
Copyright terms: Public domain | W3C validator |