| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
| 3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitri | ⊢ (𝜑 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 3bitri.3 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ (𝜓 ↔ 𝜃) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1i 228 an32 562 orbi1i 764 orass 768 or32 771 dn1dc 962 an6 1332 excxor 1389 trubifal 1427 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 alrot4 1500 excom13 1703 sborv 1905 3exdistr 1930 4exdistr 1931 eeeanv 1952 ee4anv 1953 ee8anv 1954 sb3an 1977 sb9 1998 sbnf2 2000 sbco4 2026 2exsb 2028 sb8eu 2058 sb8euh 2068 sbmo 2104 2eu4 2138 2eu7 2139 elsb1 2174 elsb2 2175 r19.26-3 2627 rexcom13 2663 cbvreu 2727 ceqsex2 2804 ceqsex4v 2807 spc3gv 2857 ralrab2 2929 rexrab2 2931 reu2 2952 rmo4 2957 reu8 2960 rmo3f 2961 sbc3an 3051 rmo3 3081 ssalel 3172 ss2rab 3260 rabss 3261 ssrab 3262 dfdif3 3274 undi 3412 undif3ss 3425 difin2 3426 dfnul2 3453 disj 3500 disjsn 3685 snssb 3756 uni0c 3866 ssint 3891 iunss 3958 ssextss 4254 eqvinop 4277 opcom 4284 opeqsn 4286 opeqpr 4287 brabsb 4296 opelopabf 4310 opabm 4316 pofun 4348 sotritrieq 4361 uniuni 4487 ordsucim 4537 opeliunxp 4719 xpiundi 4722 brinxp2 4731 ssrel 4752 reliun 4785 cnvuni 4853 dmopab3 4880 opelres 4952 elres 4983 elsnres 4984 intirr 5057 ssrnres 5113 dminxp 5115 dfrel4v 5122 dmsnm 5136 rnco 5177 sb8iota 5227 dffun2 5269 dffun4f 5275 funco 5299 funcnveq 5322 fun11 5326 isarep1 5345 dff1o4 5515 dff1o6 5826 oprabid 5957 mpo2eqb 6036 ralrnmpo 6041 rexrnmpo 6042 opabex3d 6187 opabex3 6188 xporderlem 6298 f1od2 6302 tfr0dm 6389 tfrexlem 6401 frec0g 6464 nnaord 6576 ecid 6666 mptelixpg 6802 elixpsn 6803 mapsnen 6879 xpsnen 6889 xpcomco 6894 xpassen 6898 exmidontriimlem3 7306 nqnq0 7525 opelreal 7911 pitoregt0 7933 elnn0 9268 elxnn0 9331 elxr 9868 xrnepnf 9870 elfzuzb 10111 4fvwrd4 10232 elfzo2 10242 resqrexlemsqa 11206 fisumcom2 11620 modfsummod 11640 fprodcom2fi 11808 nnwosdc 12231 isprm2 12310 isprm4 12312 pythagtriplem2 12460 4sqlem12 12596 isnsg2 13409 isnsg4 13418 dfrhm2 13786 cnfldui 14221 ntreq0 14452 txbas 14578 metrest 14826 2lgslem4 15428 |
| Copyright terms: Public domain | W3C validator |