| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
| 3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitri | ⊢ (𝜑 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 3bitri.3 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ (𝜓 ↔ 𝜃) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1i 228 an32 562 orbi1i 768 orass 772 or32 775 dn1dc 966 an6 1355 excxor 1420 trubifal 1458 truxortru 1461 truxorfal 1462 falxortru 1463 falxorfal 1464 alrot4 1532 excom13 1735 sborv 1937 3exdistr 1962 4exdistr 1963 eeeanv 1984 ee4anv 1985 ee8anv 1986 sb3an 2009 sb9 2030 sbnf2 2032 sbco4 2058 2exsb 2060 sb8eu 2090 sb8euh 2100 sbmo 2137 2eu4 2171 2eu7 2172 elsb1 2207 elsb2 2208 r19.26-3 2661 rexcom13 2697 cbvreu 2763 ceqsex2 2841 ceqsex4v 2844 spc3gv 2896 ralrab2 2968 rexrab2 2970 reu2 2991 rmo4 2996 reu8 2999 rmo3f 3000 sbc3an 3090 reu8nf 3110 rmo3 3121 ssalel 3212 ss2rab 3300 rabss 3301 ssrab 3302 dfdif3 3314 undi 3452 undif3ss 3465 difin2 3466 dfnul2 3493 disj 3540 disjsn 3728 snssb 3801 uni0c 3914 ssint 3939 iunss 4006 ssextss 4306 eqvinop 4329 opcom 4337 opeqsn 4339 opeqpr 4340 brabsb 4349 opelopabf 4363 opabm 4369 pofun 4403 sotritrieq 4416 uniuni 4542 ordsucim 4592 opeliunxp 4774 xpiundi 4777 brinxp2 4786 ssrel 4807 reliun 4840 cnvuni 4908 dmopab3 4936 opelres 5010 elres 5041 elsnres 5042 intirr 5115 ssrnres 5171 dminxp 5173 dfrel4v 5180 dmsnm 5194 rnco 5235 sb8iota 5286 dffun2 5328 dffun4f 5334 funco 5358 funcnveq 5384 fun11 5388 isarep1 5407 dff1o4 5582 dff1o6 5906 oprabid 6039 mpo2eqb 6120 ralrnmpo 6125 rexrnmpo 6126 opabex3d 6272 opabex3 6273 xporderlem 6383 f1od2 6387 tfr0dm 6474 tfrexlem 6486 frec0g 6549 nnaord 6663 ecid 6753 mptelixpg 6889 elixpsn 6890 mapsnen 6972 xpsnen 6988 xpcomco 6993 xpassen 6997 exmidontriimlem3 7413 nqnq0 7636 opelreal 8022 pitoregt0 8044 elnn0 9379 elxnn0 9442 elxr 9980 xrnepnf 9982 elfzuzb 10223 4fvwrd4 10344 elfzo2 10354 swrdnd 11199 resqrexlemsqa 11543 fisumcom2 11957 modfsummod 11977 fprodcom2fi 12145 nnwosdc 12568 isprm2 12647 isprm4 12649 pythagtriplem2 12797 4sqlem12 12933 isnsg2 13748 isnsg4 13757 dfrhm2 14126 cnfldui 14561 ntreq0 14814 txbas 14940 metrest 15188 2lgslem4 15790 umgr2edg1 16015 |
| Copyright terms: Public domain | W3C validator |