| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm5.17dc | GIF version | ||
| Description: Two ways of stating exclusive-or which are equivalent for a decidable proposition. Based on theorem *5.17 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 16-Apr-2018.) | 
| Ref | Expression | 
|---|---|
| pm5.17dc | ⊢ (DECID 𝜓 → (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ↔ ¬ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bicom 140 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (¬ 𝜓 ↔ 𝜑)) | |
| 2 | dfbi2 388 | . . 3 ⊢ ((¬ 𝜓 ↔ 𝜑) ↔ ((¬ 𝜓 → 𝜑) ∧ (𝜑 → ¬ 𝜓))) | |
| 3 | orcom 729 | . . . . 5 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
| 4 | dfordc 893 | . . . . 5 ⊢ (DECID 𝜓 → ((𝜓 ∨ 𝜑) ↔ (¬ 𝜓 → 𝜑))) | |
| 5 | 3, 4 | bitr2id 193 | . . . 4 ⊢ (DECID 𝜓 → ((¬ 𝜓 → 𝜑) ↔ (𝜑 ∨ 𝜓))) | 
| 6 | imnan 691 | . . . . 5 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (DECID 𝜓 → ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓))) | 
| 8 | 5, 7 | anbi12d 473 | . . 3 ⊢ (DECID 𝜓 → (((¬ 𝜓 → 𝜑) ∧ (𝜑 → ¬ 𝜓)) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)))) | 
| 9 | 2, 8 | bitrid 192 | . 2 ⊢ (DECID 𝜓 → ((¬ 𝜓 ↔ 𝜑) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)))) | 
| 10 | 1, 9 | bitr2id 193 | 1 ⊢ (DECID 𝜓 → (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ↔ ¬ 𝜓))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 | 
| This theorem is referenced by: xor2dc 1401 | 
| Copyright terms: Public domain | W3C validator |