Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.17dc | GIF version |
Description: Two ways of stating exclusive-or which are equivalent for a decidable proposition. Based on theorem *5.17 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 16-Apr-2018.) |
Ref | Expression |
---|---|
pm5.17dc | ⊢ (DECID 𝜓 → (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ↔ ¬ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 139 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (¬ 𝜓 ↔ 𝜑)) | |
2 | dfbi2 386 | . . 3 ⊢ ((¬ 𝜓 ↔ 𝜑) ↔ ((¬ 𝜓 → 𝜑) ∧ (𝜑 → ¬ 𝜓))) | |
3 | orcom 718 | . . . . 5 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
4 | dfordc 882 | . . . . 5 ⊢ (DECID 𝜓 → ((𝜓 ∨ 𝜑) ↔ (¬ 𝜓 → 𝜑))) | |
5 | 3, 4 | bitr2id 192 | . . . 4 ⊢ (DECID 𝜓 → ((¬ 𝜓 → 𝜑) ↔ (𝜑 ∨ 𝜓))) |
6 | imnan 680 | . . . . 5 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
7 | 6 | a1i 9 | . . . 4 ⊢ (DECID 𝜓 → ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓))) |
8 | 5, 7 | anbi12d 465 | . . 3 ⊢ (DECID 𝜓 → (((¬ 𝜓 → 𝜑) ∧ (𝜑 → ¬ 𝜓)) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)))) |
9 | 2, 8 | syl5bb 191 | . 2 ⊢ (DECID 𝜓 → ((¬ 𝜓 ↔ 𝜑) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)))) |
10 | 1, 9 | bitr2id 192 | 1 ⊢ (DECID 𝜓 → (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ↔ ¬ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: xor2dc 1380 |
Copyright terms: Public domain | W3C validator |