![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi2d | GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 144 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | orim2d 789 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
4 | 1 | biimprd 158 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 4 | orim2d 789 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜒) → (𝜃 ∨ 𝜓))) |
6 | 3, 5 | impbid 129 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1d 792 orbi12d 794 dn1dc 962 xorbi2d 1391 eueq2dc 2934 r19.44mv 3542 rexprg 3671 rextpg 3673 exmidsssn 4232 exmidsssnc 4233 swopolem 4337 sowlin 4352 elsucg 4436 elsuc2g 4437 ordsoexmid 4595 poleloe 5066 isosolem 5868 freceq2 6448 brdifun 6616 pitric 7383 elinp 7536 prloc 7553 ltexprlemloc 7669 suplocexprlemloc 7783 ltsosr 7826 aptisr 7841 suplocsrlemb 7868 axpre-ltwlin 7945 axpre-suploclemres 7963 axpre-suploc 7964 gt0add 8594 apreap 8608 apreim 8624 elznn0 9335 elznn 9336 peano2z 9356 zindd 9438 elfzp1 10141 fzm1 10169 fzosplitsni 10305 cjap 11053 dvdslelemd 11988 zeo5 12032 lcmval 12204 lcmneg 12215 lcmass 12226 isprm6 12288 infpn2 12616 lringuplu 13695 domneq0 13771 znidom 14156 dedekindeulemloc 14798 dedekindeulemeu 14801 suplociccreex 14803 dedekindicclemloc 14807 dedekindicclemeu 14810 bj-charfunr 15372 bj-nn0sucALT 15540 |
Copyright terms: Public domain | W3C validator |