Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi2d | GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 143 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | orim2d 778 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
4 | 1 | biimprd 157 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 4 | orim2d 778 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜒) → (𝜃 ∨ 𝜓))) |
6 | 3, 5 | impbid 128 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orbi1d 781 orbi12d 783 dn1dc 950 xorbi2d 1370 eueq2dc 2899 r19.44mv 3503 rexprg 3628 rextpg 3630 exmidsssn 4181 exmidsssnc 4182 swopolem 4283 sowlin 4298 elsucg 4382 elsuc2g 4383 ordsoexmid 4539 poleloe 5003 isosolem 5792 freceq2 6361 brdifun 6528 pitric 7262 elinp 7415 prloc 7432 ltexprlemloc 7548 suplocexprlemloc 7662 ltsosr 7705 aptisr 7720 suplocsrlemb 7747 axpre-ltwlin 7824 axpre-suploclemres 7842 axpre-suploc 7843 gt0add 8471 apreap 8485 apreim 8501 elznn0 9206 elznn 9207 peano2z 9227 zindd 9309 elfzp1 10007 fzm1 10035 fzosplitsni 10170 cjap 10848 dvdslelemd 11781 zeo5 11825 lcmval 11995 lcmneg 12006 lcmass 12017 isprm6 12079 infpn2 12389 dedekindeulemloc 13237 dedekindeulemeu 13240 suplociccreex 13242 dedekindicclemloc 13246 dedekindicclemeu 13249 bj-charfunr 13692 bj-nn0sucALT 13860 |
Copyright terms: Public domain | W3C validator |