| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > orbi2d | GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpd 144 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| 3 | 2 | orim2d 789 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) | 
| 4 | 1 | biimprd 158 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | 
| 5 | 4 | orim2d 789 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜒) → (𝜃 ∨ 𝜓))) | 
| 6 | 3, 5 | impbid 129 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: orbi1d 792 orbi12d 794 dn1dc 962 xorbi2d 1391 eueq2dc 2937 r19.44mv 3545 rexprg 3674 rextpg 3676 exmidsssn 4235 exmidsssnc 4236 swopolem 4340 sowlin 4355 elsucg 4439 elsuc2g 4440 ordsoexmid 4598 poleloe 5069 isosolem 5871 freceq2 6451 brdifun 6619 pitric 7388 elinp 7541 prloc 7558 ltexprlemloc 7674 suplocexprlemloc 7788 ltsosr 7831 aptisr 7846 suplocsrlemb 7873 axpre-ltwlin 7950 axpre-suploclemres 7968 axpre-suploc 7969 gt0add 8600 apreap 8614 apreim 8630 elznn0 9341 elznn 9342 peano2z 9362 zindd 9444 elfzp1 10147 fzm1 10175 fzosplitsni 10311 cjap 11071 dvdslelemd 12008 zeo5 12053 lcmval 12231 lcmneg 12242 lcmass 12253 isprm6 12315 infpn2 12673 lringuplu 13752 domneq0 13828 znidom 14213 dedekindeulemloc 14855 dedekindeulemeu 14858 suplociccreex 14860 dedekindicclemloc 14864 dedekindicclemeu 14867 bj-charfunr 15456 bj-nn0sucALT 15624 | 
| Copyright terms: Public domain | W3C validator |