| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2d | GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpd 144 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | orim2d 793 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| 4 | 1 | biimprd 158 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 4 | orim2d 793 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜒) → (𝜃 ∨ 𝜓))) |
| 6 | 3, 5 | impbid 129 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1d 796 orbi12d 798 dn1dc 966 xorbi2d 1422 eueq2dc 2976 r19.44mv 3586 rexprg 3718 rextpg 3720 exmidsssn 4285 exmidsssnc 4286 swopolem 4395 sowlin 4410 elsucg 4494 elsuc2g 4495 ordsoexmid 4653 poleloe 5127 funopsn 5816 isosolem 5947 freceq2 6537 brdifun 6705 pitric 7504 elinp 7657 prloc 7674 ltexprlemloc 7790 suplocexprlemloc 7904 ltsosr 7947 aptisr 7962 suplocsrlemb 7989 axpre-ltwlin 8066 axpre-suploclemres 8084 axpre-suploc 8085 gt0add 8716 apreap 8730 apreim 8746 elznn0 9457 elznn 9458 peano2z 9478 zindd 9561 elfzp1 10264 fzm1 10292 fzosplitsni 10436 cjap 11412 dvdslelemd 12349 zeo5 12394 lcmval 12580 lcmneg 12591 lcmass 12602 isprm6 12664 infpn2 13022 lringuplu 14154 domneq0 14230 znidom 14615 dedekindeulemloc 15287 dedekindeulemeu 15290 suplociccreex 15292 dedekindicclemloc 15296 dedekindicclemeu 15299 bj-charfunr 16131 bj-nn0sucALT 16299 |
| Copyright terms: Public domain | W3C validator |