| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2d | GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpd 144 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | orim2d 789 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| 4 | 1 | biimprd 158 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 4 | orim2d 789 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜒) → (𝜃 ∨ 𝜓))) |
| 6 | 3, 5 | impbid 129 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1d 792 orbi12d 794 dn1dc 962 xorbi2d 1391 eueq2dc 2937 r19.44mv 3546 rexprg 3675 rextpg 3677 exmidsssn 4236 exmidsssnc 4237 swopolem 4341 sowlin 4356 elsucg 4440 elsuc2g 4441 ordsoexmid 4599 poleloe 5070 isosolem 5874 freceq2 6460 brdifun 6628 pitric 7407 elinp 7560 prloc 7577 ltexprlemloc 7693 suplocexprlemloc 7807 ltsosr 7850 aptisr 7865 suplocsrlemb 7892 axpre-ltwlin 7969 axpre-suploclemres 7987 axpre-suploc 7988 gt0add 8619 apreap 8633 apreim 8649 elznn0 9360 elznn 9361 peano2z 9381 zindd 9463 elfzp1 10166 fzm1 10194 fzosplitsni 10330 cjap 11090 dvdslelemd 12027 zeo5 12072 lcmval 12258 lcmneg 12269 lcmass 12280 isprm6 12342 infpn2 12700 lringuplu 13830 domneq0 13906 znidom 14291 dedekindeulemloc 14963 dedekindeulemeu 14966 suplociccreex 14968 dedekindicclemloc 14972 dedekindicclemeu 14975 bj-charfunr 15564 bj-nn0sucALT 15732 |
| Copyright terms: Public domain | W3C validator |