| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2d | GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpd 144 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | orim2d 790 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| 4 | 1 | biimprd 158 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 4 | orim2d 790 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜒) → (𝜃 ∨ 𝜓))) |
| 6 | 3, 5 | impbid 129 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1d 793 orbi12d 795 dn1dc 963 xorbi2d 1400 eueq2dc 2950 r19.44mv 3559 rexprg 3690 rextpg 3692 exmidsssn 4254 exmidsssnc 4255 swopolem 4360 sowlin 4375 elsucg 4459 elsuc2g 4460 ordsoexmid 4618 poleloe 5091 funopsn 5775 isosolem 5906 freceq2 6492 brdifun 6660 pitric 7454 elinp 7607 prloc 7624 ltexprlemloc 7740 suplocexprlemloc 7854 ltsosr 7897 aptisr 7912 suplocsrlemb 7939 axpre-ltwlin 8016 axpre-suploclemres 8034 axpre-suploc 8035 gt0add 8666 apreap 8680 apreim 8696 elznn0 9407 elznn 9408 peano2z 9428 zindd 9511 elfzp1 10214 fzm1 10242 fzosplitsni 10386 cjap 11292 dvdslelemd 12229 zeo5 12274 lcmval 12460 lcmneg 12471 lcmass 12482 isprm6 12544 infpn2 12902 lringuplu 14033 domneq0 14109 znidom 14494 dedekindeulemloc 15166 dedekindeulemeu 15169 suplociccreex 15171 dedekindicclemloc 15175 dedekindicclemeu 15178 bj-charfunr 15884 bj-nn0sucALT 16052 |
| Copyright terms: Public domain | W3C validator |