![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi2d | GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 144 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | orim2d 788 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
4 | 1 | biimprd 158 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 4 | orim2d 788 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜒) → (𝜃 ∨ 𝜓))) |
6 | 3, 5 | impbid 129 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1d 791 orbi12d 793 dn1dc 960 xorbi2d 1380 eueq2dc 2911 r19.44mv 3518 rexprg 3645 rextpg 3647 exmidsssn 4203 exmidsssnc 4204 swopolem 4306 sowlin 4321 elsucg 4405 elsuc2g 4406 ordsoexmid 4562 poleloe 5029 isosolem 5825 freceq2 6394 brdifun 6562 pitric 7320 elinp 7473 prloc 7490 ltexprlemloc 7606 suplocexprlemloc 7720 ltsosr 7763 aptisr 7778 suplocsrlemb 7805 axpre-ltwlin 7882 axpre-suploclemres 7900 axpre-suploc 7901 gt0add 8530 apreap 8544 apreim 8560 elznn0 9268 elznn 9269 peano2z 9289 zindd 9371 elfzp1 10072 fzm1 10100 fzosplitsni 10235 cjap 10915 dvdslelemd 11849 zeo5 11893 lcmval 12063 lcmneg 12074 lcmass 12085 isprm6 12147 infpn2 12457 lringuplu 13337 dedekindeulemloc 14100 dedekindeulemeu 14103 suplociccreex 14105 dedekindicclemloc 14109 dedekindicclemeu 14112 bj-charfunr 14565 bj-nn0sucALT 14733 |
Copyright terms: Public domain | W3C validator |