| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2d | GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpd 144 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | orim2d 789 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| 4 | 1 | biimprd 158 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 4 | orim2d 789 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜒) → (𝜃 ∨ 𝜓))) |
| 6 | 3, 5 | impbid 129 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1d 792 orbi12d 794 dn1dc 962 xorbi2d 1399 eueq2dc 2945 r19.44mv 3554 rexprg 3684 rextpg 3686 exmidsssn 4245 exmidsssnc 4246 swopolem 4350 sowlin 4365 elsucg 4449 elsuc2g 4450 ordsoexmid 4608 poleloe 5079 isosolem 5883 freceq2 6469 brdifun 6637 pitric 7416 elinp 7569 prloc 7586 ltexprlemloc 7702 suplocexprlemloc 7816 ltsosr 7859 aptisr 7874 suplocsrlemb 7901 axpre-ltwlin 7978 axpre-suploclemres 7996 axpre-suploc 7997 gt0add 8628 apreap 8642 apreim 8658 elznn0 9369 elznn 9370 peano2z 9390 zindd 9473 elfzp1 10176 fzm1 10204 fzosplitsni 10345 cjap 11136 dvdslelemd 12073 zeo5 12118 lcmval 12304 lcmneg 12315 lcmass 12326 isprm6 12388 infpn2 12746 lringuplu 13876 domneq0 13952 znidom 14337 dedekindeulemloc 15009 dedekindeulemeu 15012 suplociccreex 15014 dedekindicclemloc 15018 dedekindicclemeu 15021 bj-charfunr 15610 bj-nn0sucALT 15778 |
| Copyright terms: Public domain | W3C validator |