Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi2d | GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 143 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | orim2d 783 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
4 | 1 | biimprd 157 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 4 | orim2d 783 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜒) → (𝜃 ∨ 𝜓))) |
6 | 3, 5 | impbid 128 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orbi1d 786 orbi12d 788 dn1dc 955 xorbi2d 1375 eueq2dc 2903 r19.44mv 3509 rexprg 3635 rextpg 3637 exmidsssn 4188 exmidsssnc 4189 swopolem 4290 sowlin 4305 elsucg 4389 elsuc2g 4390 ordsoexmid 4546 poleloe 5010 isosolem 5803 freceq2 6372 brdifun 6540 pitric 7283 elinp 7436 prloc 7453 ltexprlemloc 7569 suplocexprlemloc 7683 ltsosr 7726 aptisr 7741 suplocsrlemb 7768 axpre-ltwlin 7845 axpre-suploclemres 7863 axpre-suploc 7864 gt0add 8492 apreap 8506 apreim 8522 elznn0 9227 elznn 9228 peano2z 9248 zindd 9330 elfzp1 10028 fzm1 10056 fzosplitsni 10191 cjap 10870 dvdslelemd 11803 zeo5 11847 lcmval 12017 lcmneg 12028 lcmass 12039 isprm6 12101 infpn2 12411 dedekindeulemloc 13391 dedekindeulemeu 13394 suplociccreex 13396 dedekindicclemloc 13400 dedekindicclemeu 13403 bj-charfunr 13845 bj-nn0sucALT 14013 |
Copyright terms: Public domain | W3C validator |