![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi2d | GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 144 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | orim2d 788 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
4 | 1 | biimprd 158 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 4 | orim2d 788 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜒) → (𝜃 ∨ 𝜓))) |
6 | 3, 5 | impbid 129 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1d 791 orbi12d 793 dn1dc 960 xorbi2d 1380 eueq2dc 2910 r19.44mv 3517 rexprg 3644 rextpg 3646 exmidsssn 4202 exmidsssnc 4203 swopolem 4305 sowlin 4320 elsucg 4404 elsuc2g 4405 ordsoexmid 4561 poleloe 5028 isosolem 5824 freceq2 6393 brdifun 6561 pitric 7319 elinp 7472 prloc 7489 ltexprlemloc 7605 suplocexprlemloc 7719 ltsosr 7762 aptisr 7777 suplocsrlemb 7804 axpre-ltwlin 7881 axpre-suploclemres 7899 axpre-suploc 7900 gt0add 8529 apreap 8543 apreim 8559 elznn0 9267 elznn 9268 peano2z 9288 zindd 9370 elfzp1 10071 fzm1 10099 fzosplitsni 10234 cjap 10914 dvdslelemd 11848 zeo5 11892 lcmval 12062 lcmneg 12073 lcmass 12084 isprm6 12146 infpn2 12456 lringuplu 13335 dedekindeulemloc 14067 dedekindeulemeu 14070 suplociccreex 14072 dedekindicclemloc 14076 dedekindicclemeu 14079 bj-charfunr 14532 bj-nn0sucALT 14700 |
Copyright terms: Public domain | W3C validator |