![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi2d | GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 144 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | orim2d 789 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
4 | 1 | biimprd 158 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 4 | orim2d 789 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜒) → (𝜃 ∨ 𝜓))) |
6 | 3, 5 | impbid 129 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1d 792 orbi12d 794 dn1dc 962 xorbi2d 1391 eueq2dc 2925 r19.44mv 3532 rexprg 3659 rextpg 3661 exmidsssn 4220 exmidsssnc 4221 swopolem 4323 sowlin 4338 elsucg 4422 elsuc2g 4423 ordsoexmid 4579 poleloe 5046 isosolem 5845 freceq2 6417 brdifun 6585 pitric 7349 elinp 7502 prloc 7519 ltexprlemloc 7635 suplocexprlemloc 7749 ltsosr 7792 aptisr 7807 suplocsrlemb 7834 axpre-ltwlin 7911 axpre-suploclemres 7929 axpre-suploc 7930 gt0add 8559 apreap 8573 apreim 8589 elznn0 9297 elznn 9298 peano2z 9318 zindd 9400 elfzp1 10101 fzm1 10129 fzosplitsni 10264 cjap 10946 dvdslelemd 11880 zeo5 11924 lcmval 12094 lcmneg 12105 lcmass 12116 isprm6 12178 infpn2 12506 lringuplu 13540 dedekindeulemloc 14549 dedekindeulemeu 14552 suplociccreex 14554 dedekindicclemloc 14558 dedekindicclemeu 14561 bj-charfunr 15015 bj-nn0sucALT 15183 |
Copyright terms: Public domain | W3C validator |