ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xordc GIF version

Theorem xordc 1392
Description: Two ways to express "exclusive or" between decidable propositions. Theorem *5.22 of [WhiteheadRussell] p. 124, but for decidable propositions. (Contributed by Jim Kingdon, 5-May-2018.)
Assertion
Ref Expression
xordc (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))))

Proof of Theorem xordc
StepHypRef Expression
1 xornbidc 1391 . . . 4 (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑𝜓))))
21imp 124 . . 3 ((DECID 𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (𝜑𝜓)))
3 excxor 1378 . . . 4 ((𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑𝜓)))
4 ancom 266 . . . . 5 ((¬ 𝜑𝜓) ↔ (𝜓 ∧ ¬ 𝜑))
54orbi2i 762 . . . 4 (((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑𝜓)) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))
63, 5bitri 184 . . 3 ((𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))
72, 6bitr3di 195 . 2 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))))
87ex 115 1 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  wxo 1375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-xor 1376
This theorem is referenced by:  dfbi3dc  1397  pm5.24dc  1398
  Copyright terms: Public domain W3C validator