Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xordc | GIF version |
Description: Two ways to express "exclusive or" between decidable propositions. Theorem *5.22 of [WhiteheadRussell] p. 124, but for decidable propositions. (Contributed by Jim Kingdon, 5-May-2018.) |
Ref | Expression |
---|---|
xordc | ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xornbidc 1386 | . . . 4 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)))) | |
2 | 1 | imp 123 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓))) |
3 | excxor 1373 | . . . 4 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) | |
4 | ancom 264 | . . . . 5 ⊢ ((¬ 𝜑 ∧ 𝜓) ↔ (𝜓 ∧ ¬ 𝜑)) | |
5 | 4 | orbi2i 757 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓)) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) |
6 | 3, 5 | bitri 183 | . . 3 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) |
7 | 2, 6 | bitr3di 194 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))) |
8 | 7 | ex 114 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 DECID wdc 829 ⊻ wxo 1370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-xor 1371 |
This theorem is referenced by: dfbi3dc 1392 pm5.24dc 1393 |
Copyright terms: Public domain | W3C validator |