![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0funclem | Structured version Visualization version GIF version |
Description: Lemma for 0func 48857. (Contributed by Zhi Wang, 7-Oct-2025.) |
Ref | Expression |
---|---|
0funclem.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
0funclem.2 | ⊢ (𝜒 ↔ 𝜂) |
0funclem.3 | ⊢ (𝜃 ↔ 𝜁) |
0funclem.4 | ⊢ 𝜏 |
Ref | Expression |
---|---|
0funclem | ⊢ (𝜑 → (𝜓 ↔ (𝜂 ∧ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0funclem.4 | . . 3 ⊢ 𝜏 | |
2 | 0funclem.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
3 | df-3an 1089 | . . . . 5 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) ↔ ((𝜒 ∧ 𝜃) ∧ 𝜏)) | |
4 | 2, 3 | bitrdi 287 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ ((𝜒 ∧ 𝜃) ∧ 𝜏))) |
5 | 4 | rbaibd 540 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
6 | 1, 5 | mpan2 691 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
7 | 0funclem.2 | . . 3 ⊢ (𝜒 ↔ 𝜂) | |
8 | 0funclem.3 | . . 3 ⊢ (𝜃 ↔ 𝜁) | |
9 | 7, 8 | anbi12i 628 | . 2 ⊢ ((𝜒 ∧ 𝜃) ↔ (𝜂 ∧ 𝜁)) |
10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜂 ∧ 𝜁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 0func 48857 |
Copyright terms: Public domain | W3C validator |