| Mathbox for Zhi Wang | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0funclem | Structured version Visualization version GIF version | ||
| Description: Lemma for 0funcALT 48866. (Contributed by Zhi Wang, 7-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| 0funclem.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | 
| 0funclem.2 | ⊢ (𝜒 ↔ 𝜂) | 
| 0funclem.3 | ⊢ (𝜃 ↔ 𝜁) | 
| 0funclem.4 | ⊢ 𝜏 | 
| Ref | Expression | 
|---|---|
| 0funclem | ⊢ (𝜑 → (𝜓 ↔ (𝜂 ∧ 𝜁))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0funclem.4 | . . 3 ⊢ 𝜏 | |
| 2 | 0funclem.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
| 3 | df-3an 1088 | . . . . 5 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) ↔ ((𝜒 ∧ 𝜃) ∧ 𝜏)) | |
| 4 | 2, 3 | bitrdi 287 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ ((𝜒 ∧ 𝜃) ∧ 𝜏))) | 
| 5 | 4 | rbaibd 540 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → (𝜓 ↔ (𝜒 ∧ 𝜃))) | 
| 6 | 1, 5 | mpan2 691 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | 
| 7 | 0funclem.2 | . . 3 ⊢ (𝜒 ↔ 𝜂) | |
| 8 | 0funclem.3 | . . 3 ⊢ (𝜃 ↔ 𝜁) | |
| 9 | 7, 8 | anbi12i 628 | . 2 ⊢ ((𝜒 ∧ 𝜃) ↔ (𝜂 ∧ 𝜁)) | 
| 10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜂 ∧ 𝜁))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: 0funcALT 48866 | 
| Copyright terms: Public domain | W3C validator |