Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0funclem Structured version   Visualization version   GIF version

Theorem 0funclem 48856
Description: Lemma for 0func 48857. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
0funclem.1 (𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))
0funclem.2 (𝜒𝜂)
0funclem.3 (𝜃𝜁)
0funclem.4 𝜏
Assertion
Ref Expression
0funclem (𝜑 → (𝜓 ↔ (𝜂𝜁)))

Proof of Theorem 0funclem
StepHypRef Expression
1 0funclem.4 . . 3 𝜏
2 0funclem.1 . . . . 5 (𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))
3 df-3an 1089 . . . . 5 ((𝜒𝜃𝜏) ↔ ((𝜒𝜃) ∧ 𝜏))
42, 3bitrdi 287 . . . 4 (𝜑 → (𝜓 ↔ ((𝜒𝜃) ∧ 𝜏)))
54rbaibd 540 . . 3 ((𝜑𝜏) → (𝜓 ↔ (𝜒𝜃)))
61, 5mpan2 691 . 2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
7 0funclem.2 . . 3 (𝜒𝜂)
8 0funclem.3 . . 3 (𝜃𝜁)
97, 8anbi12i 628 . 2 ((𝜒𝜃) ↔ (𝜂𝜁))
106, 9bitrdi 287 1 (𝜑 → (𝜓 ↔ (𝜂𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  0func  48857
  Copyright terms: Public domain W3C validator