| Mathbox for Zhi Wang | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0func | Structured version Visualization version GIF version | ||
| Description: The functor from the empty category. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof shortened by Zhi Wang, 17-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| 0func.c | ⊢ (𝜑 → 𝐶 ∈ Cat) | 
| Ref | Expression | 
|---|---|
| 0func | ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ex 5287 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ V) | 
| 3 | base0 17233 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ∅ = (Base‘∅)) | 
| 5 | 0func.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | 2, 4, 5 | 0funcg 48863 | 1 ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 {csn 4606 〈cop 4612 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 Catccat 17677 Func cfunc 17869 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-1cn 11194 ax-addcl 11196 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-map 8849 df-ixp 8919 df-nn 12248 df-slot 17200 df-ndx 17212 df-base 17229 df-cat 17681 df-func 17873 | 
| This theorem is referenced by: fucofvalne 48972 | 
| Copyright terms: Public domain | W3C validator |