![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0func | Structured version Visualization version GIF version |
Description: The functor from the empty category. (Contributed by Zhi Wang, 7-Oct-2025.) |
Ref | Expression |
---|---|
0func.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
0func | ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfunc 17922 | . 2 ⊢ Rel (∅ Func 𝐶) | |
2 | 0ex 5316 | . . 3 ⊢ ∅ ∈ V | |
3 | 2, 2 | relsnop 5822 | . 2 ⊢ Rel {〈∅, ∅〉} |
4 | base0 17259 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
5 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
6 | eqid 2737 | . . . . 5 ⊢ (Hom ‘∅) = (Hom ‘∅) | |
7 | eqid 2737 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
8 | eqid 2737 | . . . . 5 ⊢ (Id‘∅) = (Id‘∅) | |
9 | eqid 2737 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
10 | eqid 2737 | . . . . 5 ⊢ (comp‘∅) = (comp‘∅) | |
11 | eqid 2737 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
12 | 0cat 17743 | . . . . . 6 ⊢ ∅ ∈ Cat | |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∅ ∈ Cat) |
14 | 0func.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
15 | 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 | isfunc 17924 | . . . 4 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓:∅⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ∧ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
16 | f0bi 6799 | . . . 4 ⊢ (𝑓:∅⟶(Base‘𝐶) ↔ 𝑓 = ∅) | |
17 | ral0 4522 | . . . . . 6 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) | |
18 | 4 | funcf2lem2 48840 | . . . . . 6 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ (𝑔 Fn (∅ × ∅) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)))) |
19 | 17, 18 | mpbiran2 710 | . . . . 5 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 Fn (∅ × ∅)) |
20 | 0xp 5791 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
21 | 20 | fneq2i 6674 | . . . . 5 ⊢ (𝑔 Fn (∅ × ∅) ↔ 𝑔 Fn ∅) |
22 | fn0 6707 | . . . . 5 ⊢ (𝑔 Fn ∅ ↔ 𝑔 = ∅) | |
23 | 19, 21, 22 | 3bitri 297 | . . . 4 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 = ∅) |
24 | ral0 4522 | . . . 4 ⊢ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) | |
25 | 15, 16, 23, 24 | 0funclem 48841 | . . 3 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) |
26 | brsnop 5536 | . . . 4 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) | |
27 | 2, 2, 26 | mp2an 692 | . . 3 ⊢ (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)) |
28 | 25, 27 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ 𝑓{〈∅, ∅〉}𝑔)) |
29 | 1, 3, 28 | eqbrrdiv 5811 | 1 ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 Vcvv 3481 ∅c0 4342 {csn 4634 〈cop 4640 class class class wbr 5151 × cxp 5691 Fn wfn 6564 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 2nd c2nd 8021 ↑m cmap 8874 Xcixp 8945 Basecbs 17254 Hom chom 17318 compcco 17319 Catccat 17718 Idccid 17719 Func cfunc 17914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-1cn 11220 ax-addcl 11222 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-map 8876 df-ixp 8946 df-nn 12274 df-slot 17225 df-ndx 17237 df-base 17255 df-cat 17722 df-func 17918 |
This theorem is referenced by: fucofvalne 48894 |
Copyright terms: Public domain | W3C validator |