Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0funcALT Structured version   Visualization version   GIF version

Theorem 0funcALT 49001
Description: Alternate proof of 0func 49000. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
0func.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
0funcALT (𝜑 → (∅ Func 𝐶) = {⟨∅, ∅⟩})

Proof of Theorem 0funcALT
Dummy variables 𝑓 𝑔 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17873 . 2 Rel (∅ Func 𝐶)
2 0ex 5277 . . 3 ∅ ∈ V
32, 2relsnop 5784 . 2 Rel {⟨∅, ∅⟩}
4 base0 17231 . . . . 5 ∅ = (Base‘∅)
5 eqid 2735 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2735 . . . . 5 (Hom ‘∅) = (Hom ‘∅)
7 eqid 2735 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
8 eqid 2735 . . . . 5 (Id‘∅) = (Id‘∅)
9 eqid 2735 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
10 eqid 2735 . . . . 5 (comp‘∅) = (comp‘∅)
11 eqid 2735 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
12 0cat 17699 . . . . . 6 ∅ ∈ Cat
1312a1i 11 . . . . 5 (𝜑 → ∅ ∈ Cat)
14 0func.c . . . . 5 (𝜑𝐶 ∈ Cat)
154, 5, 6, 7, 8, 9, 10, 11, 13, 14isfunc 17875 . . . 4 (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓:∅⟶(Base‘𝐶) ∧ 𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ∧ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝐶)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))))
16 f0bi 6760 . . . 4 (𝑓:∅⟶(Base‘𝐶) ↔ 𝑓 = ∅)
17 ral0 4488 . . . . . 6 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))
184funcf2lem2 48995 . . . . . 6 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ (𝑔 Fn (∅ × ∅) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))))
1917, 18mpbiran2 710 . . . . 5 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 Fn (∅ × ∅))
20 0xp 5753 . . . . . 6 (∅ × ∅) = ∅
2120fneq2i 6635 . . . . 5 (𝑔 Fn (∅ × ∅) ↔ 𝑔 Fn ∅)
22 fn0 6668 . . . . 5 (𝑔 Fn ∅ ↔ 𝑔 = ∅)
2319, 21, 223bitri 297 . . . 4 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 = ∅)
24 ral0 4488 . . . 4 𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝐶)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚)))
2515, 16, 23, 240funclem 48999 . . 3 (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
26 brsnop 5497 . . . 4 ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
272, 2, 26mp2an 692 . . 3 (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))
2825, 27bitr4di 289 . 2 (𝜑 → (𝑓(∅ Func 𝐶)𝑔𝑓{⟨∅, ∅⟩}𝑔))
291, 3, 28eqbrrdiv 5773 1 (𝜑 → (∅ Func 𝐶) = {⟨∅, ∅⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  c0 4308  {csn 4601  cop 4607   class class class wbr 5119   × cxp 5652   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  1st c1st 7984  2nd c2nd 7985  m cmap 8838  Xcixp 8909  Basecbs 17226  Hom chom 17280  compcco 17281  Catccat 17674  Idccid 17675   Func cfunc 17865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-1cn 11185  ax-addcl 11187
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-map 8840  df-ixp 8910  df-nn 12239  df-slot 17199  df-ndx 17211  df-base 17227  df-cat 17678  df-func 17869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator