| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0funcALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of 0func 49080. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0func.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| 0funcALT | ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17831 | . 2 ⊢ Rel (∅ Func 𝐶) | |
| 2 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2, 2 | relsnop 5771 | . 2 ⊢ Rel {〈∅, ∅〉} |
| 4 | base0 17191 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (Hom ‘∅) = (Hom ‘∅) | |
| 7 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (Id‘∅) = (Id‘∅) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 10 | eqid 2730 | . . . . 5 ⊢ (comp‘∅) = (comp‘∅) | |
| 11 | eqid 2730 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | 0cat 17657 | . . . . . 6 ⊢ ∅ ∈ Cat | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∅ ∈ Cat) |
| 14 | 0func.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 15 | 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 | isfunc 17833 | . . . 4 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓:∅⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ∧ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 16 | f0bi 6746 | . . . 4 ⊢ (𝑓:∅⟶(Base‘𝐶) ↔ 𝑓 = ∅) | |
| 17 | ral0 4479 | . . . . . 6 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) | |
| 18 | 4 | funcf2lem2 49075 | . . . . . 6 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ (𝑔 Fn (∅ × ∅) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)))) |
| 19 | 17, 18 | mpbiran2 710 | . . . . 5 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 Fn (∅ × ∅)) |
| 20 | 0xp 5740 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
| 21 | 20 | fneq2i 6619 | . . . . 5 ⊢ (𝑔 Fn (∅ × ∅) ↔ 𝑔 Fn ∅) |
| 22 | fn0 6652 | . . . . 5 ⊢ (𝑔 Fn ∅ ↔ 𝑔 = ∅) | |
| 23 | 19, 21, 22 | 3bitri 297 | . . . 4 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 = ∅) |
| 24 | ral0 4479 | . . . 4 ⊢ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) | |
| 25 | 15, 16, 23, 24 | 0funclem 49079 | . . 3 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) |
| 26 | brsnop 5485 | . . . 4 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) | |
| 27 | 2, 2, 26 | mp2an 692 | . . 3 ⊢ (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)) |
| 28 | 25, 27 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ 𝑓{〈∅, ∅〉}𝑔)) |
| 29 | 1, 3, 28 | eqbrrdiv 5760 | 1 ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∅c0 4299 {csn 4592 〈cop 4598 class class class wbr 5110 × cxp 5639 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 ↑m cmap 8802 Xcixp 8873 Basecbs 17186 Hom chom 17238 compcco 17239 Catccat 17632 Idccid 17633 Func cfunc 17823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-map 8804 df-ixp 8874 df-nn 12194 df-slot 17159 df-ndx 17171 df-base 17187 df-cat 17636 df-func 17827 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |