Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0funcALT Structured version   Visualization version   GIF version

Theorem 0funcALT 49203
Description: Alternate proof of 0func 49202. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
0func.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
0funcALT (𝜑 → (∅ Func 𝐶) = {⟨∅, ∅⟩})

Proof of Theorem 0funcALT
Dummy variables 𝑓 𝑔 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17779 . 2 Rel (∅ Func 𝐶)
2 0ex 5249 . . 3 ∅ ∈ V
32, 2relsnop 5751 . 2 Rel {⟨∅, ∅⟩}
4 base0 17135 . . . . 5 ∅ = (Base‘∅)
5 eqid 2733 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2733 . . . . 5 (Hom ‘∅) = (Hom ‘∅)
7 eqid 2733 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
8 eqid 2733 . . . . 5 (Id‘∅) = (Id‘∅)
9 eqid 2733 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
10 eqid 2733 . . . . 5 (comp‘∅) = (comp‘∅)
11 eqid 2733 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
12 0cat 17605 . . . . . 6 ∅ ∈ Cat
1312a1i 11 . . . . 5 (𝜑 → ∅ ∈ Cat)
14 0func.c . . . . 5 (𝜑𝐶 ∈ Cat)
154, 5, 6, 7, 8, 9, 10, 11, 13, 14isfunc 17781 . . . 4 (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓:∅⟶(Base‘𝐶) ∧ 𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ∧ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝐶)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))))
16 f0bi 6714 . . . 4 (𝑓:∅⟶(Base‘𝐶) ↔ 𝑓 = ∅)
17 ral0 4464 . . . . . 6 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))
184funcf2lem2 49197 . . . . . 6 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ (𝑔 Fn (∅ × ∅) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))))
1917, 18mpbiran2 710 . . . . 5 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 Fn (∅ × ∅))
20 0xp 5720 . . . . . 6 (∅ × ∅) = ∅
2120fneq2i 6587 . . . . 5 (𝑔 Fn (∅ × ∅) ↔ 𝑔 Fn ∅)
22 fn0 6620 . . . . 5 (𝑔 Fn ∅ ↔ 𝑔 = ∅)
2319, 21, 223bitri 297 . . . 4 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 = ∅)
24 ral0 4464 . . . 4 𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝐶)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚)))
2515, 16, 23, 240funclem 49201 . . 3 (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
26 brsnop 5467 . . . 4 ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
272, 2, 26mp2an 692 . . 3 (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))
2825, 27bitr4di 289 . 2 (𝜑 → (𝑓(∅ Func 𝐶)𝑔𝑓{⟨∅, ∅⟩}𝑔))
291, 3, 28eqbrrdiv 5740 1 (𝜑 → (∅ Func 𝐶) = {⟨∅, ∅⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3049  Vcvv 3438  c0 4284  {csn 4577  cop 4583   class class class wbr 5095   × cxp 5619   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  m cmap 8759  Xcixp 8830  Basecbs 17130  Hom chom 17182  compcco 17183  Catccat 17580  Idccid 17581   Func cfunc 17771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-1cn 11074  ax-addcl 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-map 8761  df-ixp 8831  df-nn 12136  df-slot 17103  df-ndx 17115  df-base 17131  df-cat 17584  df-func 17775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator