| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0funcALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of 0func 49069. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0func.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| 0funcALT | ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17804 | . 2 ⊢ Rel (∅ Func 𝐶) | |
| 2 | 0ex 5257 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2, 2 | relsnop 5759 | . 2 ⊢ Rel {〈∅, ∅〉} |
| 4 | base0 17160 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Hom ‘∅) = (Hom ‘∅) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (Id‘∅) = (Id‘∅) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (comp‘∅) = (comp‘∅) | |
| 11 | eqid 2729 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | 0cat 17630 | . . . . . 6 ⊢ ∅ ∈ Cat | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∅ ∈ Cat) |
| 14 | 0func.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 15 | 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 | isfunc 17806 | . . . 4 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓:∅⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ∧ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 16 | f0bi 6725 | . . . 4 ⊢ (𝑓:∅⟶(Base‘𝐶) ↔ 𝑓 = ∅) | |
| 17 | ral0 4472 | . . . . . 6 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) | |
| 18 | 4 | funcf2lem2 49064 | . . . . . 6 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ (𝑔 Fn (∅ × ∅) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)))) |
| 19 | 17, 18 | mpbiran2 710 | . . . . 5 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 Fn (∅ × ∅)) |
| 20 | 0xp 5729 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
| 21 | 20 | fneq2i 6598 | . . . . 5 ⊢ (𝑔 Fn (∅ × ∅) ↔ 𝑔 Fn ∅) |
| 22 | fn0 6631 | . . . . 5 ⊢ (𝑔 Fn ∅ ↔ 𝑔 = ∅) | |
| 23 | 19, 21, 22 | 3bitri 297 | . . . 4 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 = ∅) |
| 24 | ral0 4472 | . . . 4 ⊢ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) | |
| 25 | 15, 16, 23, 24 | 0funclem 49068 | . . 3 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) |
| 26 | brsnop 5477 | . . . 4 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) | |
| 27 | 2, 2, 26 | mp2an 692 | . . 3 ⊢ (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)) |
| 28 | 25, 27 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ 𝑓{〈∅, ∅〉}𝑔)) |
| 29 | 1, 3, 28 | eqbrrdiv 5748 | 1 ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∅c0 4292 {csn 4585 〈cop 4591 class class class wbr 5102 × cxp 5629 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 ↑m cmap 8776 Xcixp 8847 Basecbs 17155 Hom chom 17207 compcco 17208 Catccat 17605 Idccid 17606 Func cfunc 17796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-map 8778 df-ixp 8848 df-nn 12163 df-slot 17128 df-ndx 17140 df-base 17156 df-cat 17609 df-func 17800 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |