Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0funcALT Structured version   Visualization version   GIF version

Theorem 0funcALT 48897
Description: Alternate proof of 0func 48896. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
0func.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
0funcALT (𝜑 → (∅ Func 𝐶) = {⟨∅, ∅⟩})

Proof of Theorem 0funcALT
Dummy variables 𝑓 𝑔 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17903 . 2 Rel (∅ Func 𝐶)
2 0ex 5305 . . 3 ∅ ∈ V
32, 2relsnop 5813 . 2 Rel {⟨∅, ∅⟩}
4 base0 17248 . . . . 5 ∅ = (Base‘∅)
5 eqid 2736 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2736 . . . . 5 (Hom ‘∅) = (Hom ‘∅)
7 eqid 2736 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
8 eqid 2736 . . . . 5 (Id‘∅) = (Id‘∅)
9 eqid 2736 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
10 eqid 2736 . . . . 5 (comp‘∅) = (comp‘∅)
11 eqid 2736 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
12 0cat 17728 . . . . . 6 ∅ ∈ Cat
1312a1i 11 . . . . 5 (𝜑 → ∅ ∈ Cat)
14 0func.c . . . . 5 (𝜑𝐶 ∈ Cat)
154, 5, 6, 7, 8, 9, 10, 11, 13, 14isfunc 17905 . . . 4 (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓:∅⟶(Base‘𝐶) ∧ 𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ∧ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝐶)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))))
16 f0bi 6789 . . . 4 (𝑓:∅⟶(Base‘𝐶) ↔ 𝑓 = ∅)
17 ral0 4512 . . . . . 6 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))
184funcf2lem2 48891 . . . . . 6 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ (𝑔 Fn (∅ × ∅) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))))
1917, 18mpbiran2 710 . . . . 5 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 Fn (∅ × ∅))
20 0xp 5782 . . . . . 6 (∅ × ∅) = ∅
2120fneq2i 6664 . . . . 5 (𝑔 Fn (∅ × ∅) ↔ 𝑔 Fn ∅)
22 fn0 6697 . . . . 5 (𝑔 Fn ∅ ↔ 𝑔 = ∅)
2319, 21, 223bitri 297 . . . 4 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 = ∅)
24 ral0 4512 . . . 4 𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝐶)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚)))
2515, 16, 23, 240funclem 48895 . . 3 (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
26 brsnop 5525 . . . 4 ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
272, 2, 26mp2an 692 . . 3 (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))
2825, 27bitr4di 289 . 2 (𝜑 → (𝑓(∅ Func 𝐶)𝑔𝑓{⟨∅, ∅⟩}𝑔))
291, 3, 28eqbrrdiv 5802 1 (𝜑 → (∅ Func 𝐶) = {⟨∅, ∅⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3060  Vcvv 3479  c0 4332  {csn 4624  cop 4630   class class class wbr 5141   × cxp 5681   Fn wfn 6554  wf 6555  cfv 6559  (class class class)co 7429  1st c1st 8008  2nd c2nd 8009  m cmap 8862  Xcixp 8933  Basecbs 17243  Hom chom 17304  compcco 17305  Catccat 17703  Idccid 17704   Func cfunc 17895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-1cn 11209  ax-addcl 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-map 8864  df-ixp 8934  df-nn 12263  df-slot 17215  df-ndx 17227  df-base 17244  df-cat 17707  df-func 17899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator