| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0funcALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of 0func 49000. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0func.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| 0funcALT | ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17873 | . 2 ⊢ Rel (∅ Func 𝐶) | |
| 2 | 0ex 5277 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2, 2 | relsnop 5784 | . 2 ⊢ Rel {〈∅, ∅〉} |
| 4 | base0 17231 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (Hom ‘∅) = (Hom ‘∅) | |
| 7 | eqid 2735 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 8 | eqid 2735 | . . . . 5 ⊢ (Id‘∅) = (Id‘∅) | |
| 9 | eqid 2735 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 10 | eqid 2735 | . . . . 5 ⊢ (comp‘∅) = (comp‘∅) | |
| 11 | eqid 2735 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | 0cat 17699 | . . . . . 6 ⊢ ∅ ∈ Cat | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∅ ∈ Cat) |
| 14 | 0func.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 15 | 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 | isfunc 17875 | . . . 4 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓:∅⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ∧ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 16 | f0bi 6760 | . . . 4 ⊢ (𝑓:∅⟶(Base‘𝐶) ↔ 𝑓 = ∅) | |
| 17 | ral0 4488 | . . . . . 6 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) | |
| 18 | 4 | funcf2lem2 48995 | . . . . . 6 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ (𝑔 Fn (∅ × ∅) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)))) |
| 19 | 17, 18 | mpbiran2 710 | . . . . 5 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 Fn (∅ × ∅)) |
| 20 | 0xp 5753 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
| 21 | 20 | fneq2i 6635 | . . . . 5 ⊢ (𝑔 Fn (∅ × ∅) ↔ 𝑔 Fn ∅) |
| 22 | fn0 6668 | . . . . 5 ⊢ (𝑔 Fn ∅ ↔ 𝑔 = ∅) | |
| 23 | 19, 21, 22 | 3bitri 297 | . . . 4 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 = ∅) |
| 24 | ral0 4488 | . . . 4 ⊢ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) | |
| 25 | 15, 16, 23, 24 | 0funclem 48999 | . . 3 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) |
| 26 | brsnop 5497 | . . . 4 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) | |
| 27 | 2, 2, 26 | mp2an 692 | . . 3 ⊢ (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)) |
| 28 | 25, 27 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ 𝑓{〈∅, ∅〉}𝑔)) |
| 29 | 1, 3, 28 | eqbrrdiv 5773 | 1 ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∅c0 4308 {csn 4601 〈cop 4607 class class class wbr 5119 × cxp 5652 Fn wfn 6525 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 1st c1st 7984 2nd c2nd 7985 ↑m cmap 8838 Xcixp 8909 Basecbs 17226 Hom chom 17280 compcco 17281 Catccat 17674 Idccid 17675 Func cfunc 17865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-1cn 11185 ax-addcl 11187 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-map 8840 df-ixp 8910 df-nn 12239 df-slot 17199 df-ndx 17211 df-base 17227 df-cat 17678 df-func 17869 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |