| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0funcALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of 0func 48896. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0func.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| 0funcALT | ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17903 | . 2 ⊢ Rel (∅ Func 𝐶) | |
| 2 | 0ex 5305 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2, 2 | relsnop 5813 | . 2 ⊢ Rel {〈∅, ∅〉} |
| 4 | base0 17248 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | eqid 2736 | . . . . 5 ⊢ (Hom ‘∅) = (Hom ‘∅) | |
| 7 | eqid 2736 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 8 | eqid 2736 | . . . . 5 ⊢ (Id‘∅) = (Id‘∅) | |
| 9 | eqid 2736 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 10 | eqid 2736 | . . . . 5 ⊢ (comp‘∅) = (comp‘∅) | |
| 11 | eqid 2736 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | 0cat 17728 | . . . . . 6 ⊢ ∅ ∈ Cat | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∅ ∈ Cat) |
| 14 | 0func.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 15 | 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 | isfunc 17905 | . . . 4 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓:∅⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ∧ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 16 | f0bi 6789 | . . . 4 ⊢ (𝑓:∅⟶(Base‘𝐶) ↔ 𝑓 = ∅) | |
| 17 | ral0 4512 | . . . . . 6 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) | |
| 18 | 4 | funcf2lem2 48891 | . . . . . 6 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ (𝑔 Fn (∅ × ∅) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)))) |
| 19 | 17, 18 | mpbiran2 710 | . . . . 5 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 Fn (∅ × ∅)) |
| 20 | 0xp 5782 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
| 21 | 20 | fneq2i 6664 | . . . . 5 ⊢ (𝑔 Fn (∅ × ∅) ↔ 𝑔 Fn ∅) |
| 22 | fn0 6697 | . . . . 5 ⊢ (𝑔 Fn ∅ ↔ 𝑔 = ∅) | |
| 23 | 19, 21, 22 | 3bitri 297 | . . . 4 ⊢ (𝑔 ∈ X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 = ∅) |
| 24 | ral0 4512 | . . . 4 ⊢ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) | |
| 25 | 15, 16, 23, 24 | 0funclem 48895 | . . 3 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) |
| 26 | brsnop 5525 | . . . 4 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))) | |
| 27 | 2, 2, 26 | mp2an 692 | . . 3 ⊢ (𝑓{〈∅, ∅〉}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)) |
| 28 | 25, 27 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ 𝑓{〈∅, ∅〉}𝑔)) |
| 29 | 1, 3, 28 | eqbrrdiv 5802 | 1 ⊢ (𝜑 → (∅ Func 𝐶) = {〈∅, ∅〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3060 Vcvv 3479 ∅c0 4332 {csn 4624 〈cop 4630 class class class wbr 5141 × cxp 5681 Fn wfn 6554 ⟶wf 6555 ‘cfv 6559 (class class class)co 7429 1st c1st 8008 2nd c2nd 8009 ↑m cmap 8862 Xcixp 8933 Basecbs 17243 Hom chom 17304 compcco 17305 Catccat 17703 Idccid 17704 Func cfunc 17895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-1cn 11209 ax-addcl 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-map 8864 df-ixp 8934 df-nn 12263 df-slot 17215 df-ndx 17227 df-base 17244 df-cat 17707 df-func 17899 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |