Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0funcALT Structured version   Visualization version   GIF version

Theorem 0funcALT 49081
Description: Alternate proof of 0func 49080. (Contributed by Zhi Wang, 7-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
0func.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
0funcALT (𝜑 → (∅ Func 𝐶) = {⟨∅, ∅⟩})

Proof of Theorem 0funcALT
Dummy variables 𝑓 𝑔 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17831 . 2 Rel (∅ Func 𝐶)
2 0ex 5265 . . 3 ∅ ∈ V
32, 2relsnop 5771 . 2 Rel {⟨∅, ∅⟩}
4 base0 17191 . . . . 5 ∅ = (Base‘∅)
5 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2730 . . . . 5 (Hom ‘∅) = (Hom ‘∅)
7 eqid 2730 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
8 eqid 2730 . . . . 5 (Id‘∅) = (Id‘∅)
9 eqid 2730 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
10 eqid 2730 . . . . 5 (comp‘∅) = (comp‘∅)
11 eqid 2730 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
12 0cat 17657 . . . . . 6 ∅ ∈ Cat
1312a1i 11 . . . . 5 (𝜑 → ∅ ∈ Cat)
14 0func.c . . . . 5 (𝜑𝐶 ∈ Cat)
154, 5, 6, 7, 8, 9, 10, 11, 13, 14isfunc 17833 . . . 4 (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓:∅⟶(Base‘𝐶) ∧ 𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ∧ ∀𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝐶)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))))
16 f0bi 6746 . . . 4 (𝑓:∅⟶(Base‘𝐶) ↔ 𝑓 = ∅)
17 ral0 4479 . . . . . 6 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))
184funcf2lem2 49075 . . . . . 6 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ (𝑔 Fn (∅ × ∅) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑔𝑦):(𝑥(Hom ‘∅)𝑦)⟶((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))))
1917, 18mpbiran2 710 . . . . 5 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 Fn (∅ × ∅))
20 0xp 5740 . . . . . 6 (∅ × ∅) = ∅
2120fneq2i 6619 . . . . 5 (𝑔 Fn (∅ × ∅) ↔ 𝑔 Fn ∅)
22 fn0 6652 . . . . 5 (𝑔 Fn ∅ ↔ 𝑔 = ∅)
2319, 21, 223bitri 297 . . . 4 (𝑔X𝑧 ∈ (∅ × ∅)(((𝑓‘(1st𝑧))(Hom ‘𝐶)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘∅)‘𝑧)) ↔ 𝑔 = ∅)
24 ral0 4479 . . . 4 𝑥 ∈ ∅ (((𝑥𝑔𝑥)‘((Id‘∅)‘𝑥)) = ((Id‘𝐶)‘(𝑓𝑥)) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑚 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑛 ∈ (𝑦(Hom ‘∅)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘∅)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝐶)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚)))
2515, 16, 23, 240funclem 49079 . . 3 (𝜑 → (𝑓(∅ Func 𝐶)𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
26 brsnop 5485 . . . 4 ((∅ ∈ V ∧ ∅ ∈ V) → (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅)))
272, 2, 26mp2an 692 . . 3 (𝑓{⟨∅, ∅⟩}𝑔 ↔ (𝑓 = ∅ ∧ 𝑔 = ∅))
2825, 27bitr4di 289 . 2 (𝜑 → (𝑓(∅ Func 𝐶)𝑔𝑓{⟨∅, ∅⟩}𝑔))
291, 3, 28eqbrrdiv 5760 1 (𝜑 → (∅ Func 𝐶) = {⟨∅, ∅⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  c0 4299  {csn 4592  cop 4598   class class class wbr 5110   × cxp 5639   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  m cmap 8802  Xcixp 8873  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Idccid 17633   Func cfunc 17823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-map 8804  df-ixp 8874  df-nn 12194  df-slot 17159  df-ndx 17171  df-base 17187  df-cat 17636  df-func 17827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator