|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rbaibd | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | 
| Ref | Expression | 
|---|---|
| rbaibd | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | baibd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | biancomd 463 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | 
| 3 | 2 | baibd 539 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: qsqueeze 13244 o1lo12 15575 incexc2 15875 gexdvds 19603 fsumvma 27258 qusker 33378 ssdifidlprm 33487 0funclem 48935 | 
| Copyright terms: Public domain | W3C validator |