MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rbaibd Structured version   Visualization version   GIF version

Theorem rbaibd 533
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
baibd.1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Assertion
Ref Expression
rbaibd ((𝜑𝜃) → (𝜓𝜒))

Proof of Theorem rbaibd
StepHypRef Expression
1 baibd.1 . 2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
2 iba 520 . . 3 (𝜃 → (𝜒 ↔ (𝜒𝜃)))
32bicomd 215 . 2 (𝜃 → ((𝜒𝜃) ↔ 𝜒))
41, 3sylan9bb 502 1 ((𝜑𝜃) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 388
This theorem is referenced by:  qsqueeze  12409  o1lo12  14754  incexc2  15051  gexdvds  18482  fsumvma  25506  qusker  30629
  Copyright terms: Public domain W3C validator