MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.2g Structured version   Visualization version   GIF version

Theorem 19.2g 2183
Description: Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. Use 19.2 1981 when sufficient. (Contributed by Mel L. O'Cat, 31-Mar-2008.)
Assertion
Ref Expression
19.2g (∀𝑥𝜑 → ∃𝑦𝜑)

Proof of Theorem 19.2g
StepHypRef Expression
1 19.8a 2176 . 2 (𝜑 → ∃𝑦𝜑)
21sps 2180 1 (∀𝑥𝜑 → ∃𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator