Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spsd | Structured version Visualization version GIF version |
Description: Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.) |
Ref | Expression |
---|---|
spsd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
spsd | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2174 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
2 | spsd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5 34 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-ex 1780 |
This theorem is referenced by: axc11v 2254 axc11rv 2255 equs5av 2269 equvel 2454 nfsb4t 2501 dfmoeu 2534 moexexlem 2626 2eu6 2656 ab0OLD 4315 zorn2lem4 10301 zorn2lem5 10302 axpowndlem3 10401 axacndlem5 10413 axc11n11r 34910 wl-equsal1i 35746 axc5c4c711 42057 |
Copyright terms: Public domain | W3C validator |