Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spsd | Structured version Visualization version GIF version |
Description: Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.) |
Ref | Expression |
---|---|
spsd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
spsd | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2179 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
2 | spsd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5 34 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-ex 1786 |
This theorem is referenced by: axc11v 2259 axc11rv 2260 equs5av 2274 equvel 2457 nfsb4t 2504 dfmoeu 2537 moexexlem 2629 2eu6 2659 ab0OLD 4314 zorn2lem4 10239 zorn2lem5 10240 axpowndlem3 10339 axacndlem5 10351 axc11n11r 34844 wl-equsal1i 35681 axc5c4c711 41972 |
Copyright terms: Public domain | W3C validator |