| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spsd | Structured version Visualization version GIF version | ||
| Description: Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.) |
| Ref | Expression |
|---|---|
| spsd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| spsd | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2186 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 2 | spsd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 34 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: axc11v 2267 axc11rv 2268 equs5av 2279 equvel 2456 nfsb4t 2499 dfmoeu 2531 moexexlem 2621 2eu6 2652 zorn2lem4 10385 zorn2lem5 10386 axpowndlem3 10485 axacndlem5 10497 axc11n11r 36717 wl-equsal1i 37578 axc5c4c711 44434 |
| Copyright terms: Public domain | W3C validator |