| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21bi | Structured version Visualization version GIF version | ||
| Description: Inference form of 19.21 2208 and also deduction form of sp 2184. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| 19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| 19.21bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
| 2 | sp 2184 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.21bbi 2191 axc7e 2317 eleq2w2 2725 eqeq1dALT 2732 eleq2dALT 2815 nfeqd 2902 funmoOLD 6532 funun 6562 fununi 6591 findcard 9127 findcard2 9128 ssfi 9137 ttrclselem2 9679 axpowndlem4 10553 axregndlem2 10556 axinfnd 10559 prcdnq 10946 dfrtrcl2 15028 relexpindlem 15029 bnj1379 34820 bnj1052 34965 bnj1118 34974 bnj1154 34989 bnj1280 35010 gblacfnacd 35089 onvf1odlem4 35093 dftrcl3 43709 dfrtrcl3 43722 vk15.4j 44518 hbimpg 44544 pgindnf 49705 |
| Copyright terms: Public domain | W3C validator |