| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21bi | Structured version Visualization version GIF version | ||
| Description: Inference form of 19.21 2210 and also deduction form of sp 2186. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| 19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| 19.21bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
| 2 | sp 2186 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 19.21bbi 2193 axc7e 2319 eleq2w2 2727 eqeq1dALT 2734 eleq2dALT 2818 nfeqd 2905 funun 6522 fununi 6551 findcard 9068 findcard2 9069 ssfi 9077 ttrclselem2 9611 axpowndlem4 10486 axregndlem2 10489 axinfnd 10492 prcdnq 10879 dfrtrcl2 14964 relexpindlem 14965 bnj1379 34834 bnj1052 34979 bnj1118 34988 bnj1154 35003 bnj1280 35024 gblacfnacd 35138 onvf1odlem4 35142 dftrcl3 43753 dfrtrcl3 43766 vk15.4j 44561 hbimpg 44587 pgindnf 49748 |
| Copyright terms: Public domain | W3C validator |