![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.21bi | Structured version Visualization version GIF version |
Description: Inference form of 19.21 2208 and also deduction form of sp 2184. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
19.21bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
2 | sp 2184 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 19.21bbi 2191 axc7e 2322 eleq2w2 2736 eqeq1dALT 2743 eleq2dALT 2831 nfeqd 2919 poclOLD 5616 funmoOLD 6594 funun 6624 fununi 6653 findcard 9229 findcard2 9230 ssfi 9240 ttrclselem2 9795 axpowndlem4 10669 axregndlem2 10672 axinfnd 10675 prcdnq 11062 dfrtrcl2 15111 relexpindlem 15112 bnj1379 34806 bnj1052 34951 bnj1118 34960 bnj1154 34975 bnj1280 34996 gblacfnacd 35075 dftrcl3 43682 dfrtrcl3 43695 vk15.4j 44499 hbimpg 44525 pgindnf 48808 |
Copyright terms: Public domain | W3C validator |