MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.21bi Structured version   Visualization version   GIF version

Theorem 19.21bi 2173
Description: Inference form of 19.21 2192 and also deduction form of sp 2167. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
19.21bi.1 (𝜑 → ∀𝑥𝜓)
Assertion
Ref Expression
19.21bi (𝜑𝜓)

Proof of Theorem 19.21bi
StepHypRef Expression
1 19.21bi.1 . 2 (𝜑 → ∀𝑥𝜓)
2 sp 2167 . 2 (∀𝑥𝜓𝜓)
31, 2syl 17 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-12 2163
This theorem depends on definitions:  df-bi 199  df-ex 1824
This theorem is referenced by:  19.21bbi  2174  axc7e  2293  eqeq1dALT  2781  eleq2dALT  2846  ssel  3815  pocl  5281  funmo  6151  funun  6180  fununi  6209  findcard  8487  findcard2  8488  axpowndlem4  9757  axregndlem2  9760  axinfnd  9763  prcdnq  10150  dfrtrcl2  14209  relexpindlem  14210  bnj1379  31500  bnj1052  31642  bnj1118  31651  bnj1154  31666  bnj1280  31687  dftrcl3  38969  dfrtrcl3  38982  vk15.4j  39688  hbimpg  39714
  Copyright terms: Public domain W3C validator