![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.21bi | Structured version Visualization version GIF version |
Description: Inference form of 19.21 2205 and also deduction form of sp 2181. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
19.21bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
2 | sp 2181 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: 19.21bbi 2188 axc7e 2317 eleq2w2 2731 eqeq1dALT 2738 eleq2dALT 2826 nfeqd 2914 funmoOLD 6584 funun 6614 fununi 6643 findcard 9202 findcard2 9203 ssfi 9212 ttrclselem2 9764 axpowndlem4 10638 axregndlem2 10641 axinfnd 10644 prcdnq 11031 dfrtrcl2 15098 relexpindlem 15099 bnj1379 34823 bnj1052 34968 bnj1118 34977 bnj1154 34992 bnj1280 35013 gblacfnacd 35092 dftrcl3 43710 dfrtrcl3 43723 vk15.4j 44526 hbimpg 44552 pgindnf 48947 |
Copyright terms: Public domain | W3C validator |