| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21bi | Structured version Visualization version GIF version | ||
| Description: Inference form of 19.21 2208 and also deduction form of sp 2184. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| 19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| 19.21bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
| 2 | sp 2184 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.21bbi 2191 axc7e 2319 eleq2w2 2732 eqeq1dALT 2739 eleq2dALT 2822 nfeqd 2910 funmoOLD 6557 funun 6587 fununi 6616 findcard 9182 findcard2 9183 ssfi 9192 ttrclselem2 9745 axpowndlem4 10619 axregndlem2 10622 axinfnd 10625 prcdnq 11012 dfrtrcl2 15086 relexpindlem 15087 bnj1379 34866 bnj1052 35011 bnj1118 35020 bnj1154 35035 bnj1280 35056 gblacfnacd 35135 dftrcl3 43711 dfrtrcl3 43724 vk15.4j 44520 hbimpg 44546 pgindnf 49547 |
| Copyright terms: Public domain | W3C validator |