Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.21bi | Structured version Visualization version GIF version |
Description: Inference form of 19.21 2203 and also deduction form of sp 2178. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
19.21bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
2 | sp 2178 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 19.21bbi 2185 axc7e 2316 eleq2w2 2734 eqeq1dALT 2741 eleq2dALT 2825 nfeqd 2916 sselOLD 3911 poclOLD 5502 funmo 6434 funun 6464 fununi 6493 findcard 8908 findcard2 8909 ssfi 8918 findcard2OLD 8986 axpowndlem4 10287 axregndlem2 10290 axinfnd 10293 prcdnq 10680 dfrtrcl2 14701 relexpindlem 14702 bnj1379 32710 bnj1052 32855 bnj1118 32864 bnj1154 32879 bnj1280 32900 ttrclselem2 33712 dftrcl3 41217 dfrtrcl3 41230 vk15.4j 42037 hbimpg 42063 |
Copyright terms: Public domain | W3C validator |