| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21bi | Structured version Visualization version GIF version | ||
| Description: Inference form of 19.21 2208 and also deduction form of sp 2184. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| 19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| 19.21bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
| 2 | sp 2184 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.21bbi 2191 axc7e 2317 eleq2w2 2725 eqeq1dALT 2732 eleq2dALT 2815 nfeqd 2902 funun 6546 fununi 6575 findcard 9104 findcard2 9105 ssfi 9114 ttrclselem2 9655 axpowndlem4 10529 axregndlem2 10532 axinfnd 10535 prcdnq 10922 dfrtrcl2 15004 relexpindlem 15005 bnj1379 34793 bnj1052 34938 bnj1118 34947 bnj1154 34962 bnj1280 34983 gblacfnacd 35062 onvf1odlem4 35066 dftrcl3 43682 dfrtrcl3 43695 vk15.4j 44491 hbimpg 44517 pgindnf 49678 |
| Copyright terms: Public domain | W3C validator |