| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21bi | Structured version Visualization version GIF version | ||
| Description: Inference form of 19.21 2208 and also deduction form of sp 2184. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| 19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| 19.21bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
| 2 | sp 2184 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.21bbi 2191 axc7e 2317 eleq2w2 2726 eqeq1dALT 2733 eleq2dALT 2816 nfeqd 2903 funmoOLD 6535 funun 6565 fununi 6594 findcard 9133 findcard2 9134 ssfi 9143 ttrclselem2 9686 axpowndlem4 10560 axregndlem2 10563 axinfnd 10566 prcdnq 10953 dfrtrcl2 15035 relexpindlem 15036 bnj1379 34827 bnj1052 34972 bnj1118 34981 bnj1154 34996 bnj1280 35017 gblacfnacd 35096 onvf1odlem4 35100 dftrcl3 43716 dfrtrcl3 43729 vk15.4j 44525 hbimpg 44551 pgindnf 49709 |
| Copyright terms: Public domain | W3C validator |