| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21bi | Structured version Visualization version GIF version | ||
| Description: Inference form of 19.21 2208 and also deduction form of sp 2184. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| 19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| 19.21bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
| 2 | sp 2184 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.21bbi 2191 axc7e 2317 eleq2w2 2725 eqeq1dALT 2732 eleq2dALT 2815 nfeqd 2902 funun 6528 fununi 6557 findcard 9077 findcard2 9078 ssfi 9087 ttrclselem2 9622 axpowndlem4 10494 axregndlem2 10497 axinfnd 10500 prcdnq 10887 dfrtrcl2 14969 relexpindlem 14970 bnj1379 34797 bnj1052 34942 bnj1118 34951 bnj1154 34966 bnj1280 34987 gblacfnacd 35075 onvf1odlem4 35079 dftrcl3 43693 dfrtrcl3 43706 vk15.4j 44502 hbimpg 44528 pgindnf 49701 |
| Copyright terms: Public domain | W3C validator |