![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.21bi | Structured version Visualization version GIF version |
Description: Inference form of 19.21 2192 and also deduction form of sp 2167. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
19.21bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
2 | sp 2167 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-12 2163 |
This theorem depends on definitions: df-bi 199 df-ex 1824 |
This theorem is referenced by: 19.21bbi 2174 axc7e 2293 eqeq1dALT 2781 eleq2dALT 2846 ssel 3815 pocl 5281 funmo 6151 funun 6180 fununi 6209 findcard 8487 findcard2 8488 axpowndlem4 9757 axregndlem2 9760 axinfnd 9763 prcdnq 10150 dfrtrcl2 14209 relexpindlem 14210 bnj1379 31500 bnj1052 31642 bnj1118 31651 bnj1154 31666 bnj1280 31687 dftrcl3 38969 dfrtrcl3 38982 vk15.4j 39688 hbimpg 39714 |
Copyright terms: Public domain | W3C validator |