MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.21bi Structured version   Visualization version   GIF version

Theorem 19.21bi 2190
Description: Inference form of 19.21 2208 and also deduction form of sp 2184. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
19.21bi.1 (𝜑 → ∀𝑥𝜓)
Assertion
Ref Expression
19.21bi (𝜑𝜓)

Proof of Theorem 19.21bi
StepHypRef Expression
1 19.21bi.1 . 2 (𝜑 → ∀𝑥𝜓)
2 sp 2184 . 2 (∀𝑥𝜓𝜓)
31, 2syl 17 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  19.21bbi  2191  axc7e  2322  eleq2w2  2736  eqeq1dALT  2743  eleq2dALT  2831  nfeqd  2919  poclOLD  5616  funmoOLD  6594  funun  6624  fununi  6653  findcard  9229  findcard2  9230  ssfi  9240  ttrclselem2  9795  axpowndlem4  10669  axregndlem2  10672  axinfnd  10675  prcdnq  11062  dfrtrcl2  15111  relexpindlem  15112  bnj1379  34806  bnj1052  34951  bnj1118  34960  bnj1154  34975  bnj1280  34996  gblacfnacd  35075  dftrcl3  43682  dfrtrcl3  43695  vk15.4j  44499  hbimpg  44525  pgindnf  48808
  Copyright terms: Public domain W3C validator