| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sps | Structured version Visualization version GIF version | ||
| Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) |
| Ref | Expression |
|---|---|
| sps.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sps | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2186 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 2sp 2189 19.2g 2191 nfim1 2202 axc16g 2263 drsb2 2269 axc11r 2368 axc15 2422 equvel 2456 sb4a 2480 dfsb1 2481 dfsb2 2493 drsb1 2495 nfsb4t 2499 sbco2 2511 sbco3 2513 sb9 2519 sbal1 2528 sbal2 2529 eujustALT 2567 2eu6 2652 ralcom2 3343 ceqsalgALT 3473 reu6 3685 rexdifi 4100 dfnfc2 4881 nfnid 5313 eusvnfb 5331 mosubopt 5450 dfid3 5514 fv3 6840 fvmptt 6949 fnoprabg 7469 fprlem1 8230 pssnn 9078 frrlem15 9647 kmlem16 10054 nd3 10477 axunndlem1 10483 axunnd 10484 axpowndlem1 10485 axregndlem1 10490 axregndlem2 10491 axacndlem5 10499 axsepg2 35089 axsepg2ALT 35090 axnulg 35110 fundmpss 35799 nalfal 36436 unisym1 36456 bj-sbsb 36870 wl-nfimf1 37559 wl-axc11r 37563 wl-dral1d 37564 wl-nfs1t 37570 wl-sb8t 37585 wl-sbhbt 37587 wl-equsb4 37590 wl-sbalnae 37595 wl-2spsbbi 37598 wl-mo3t 37609 wl-ax11-lem5 37622 wl-ax11-lem8 37625 cotrintab 43646 pm11.57 44421 axc5c4c711toc7 44436 axc11next 44438 pm14.122b 44455 dropab1 44478 dropab2 44479 ax6e2eq 44589 |
| Copyright terms: Public domain | W3C validator |