![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sps | Structured version Visualization version GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2224 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-12 2220 |
This theorem depends on definitions: df-bi 199 df-ex 1879 |
This theorem is referenced by: 2sp 2227 19.2g 2229 nfim1 2239 axc16g 2290 axc11r 2388 axc15 2442 axc15OLD 2443 equvel 2477 dfsb2 2504 drsb1 2508 drsb2 2509 nfsb4t 2520 sbi1 2523 sbco2 2547 sbco3 2549 sb9 2558 sbal1 2593 eujustALT 2643 2eu6 2738 ralcom2 3314 ceqsalgALT 3448 reu6 3620 sbcal 3712 reldisj 4244 dfnfc2 4678 nfnid 5075 eusvnfb 5093 mosubopt 5196 dfid3 5251 idrefOLD 5751 fv3 6451 fvmptt 6547 fnoprabg 7021 wfrlem5 7685 pssnn 8447 kmlem16 9302 nd3 9726 axunndlem1 9732 axunnd 9733 axpowndlem1 9734 axregndlem1 9739 axregndlem2 9740 axacndlem5 9748 fundmpss 32195 frrlem5 32312 nalfal 32925 unisym1 32944 bj-sbsb 33341 bj-mo3OLD 33349 bj-ax9 33404 wl-nfimf1 33850 wl-dral1d 33855 wl-nfs1t 33861 wl-sb8t 33871 wl-sbhbt 33873 wl-equsb4 33876 wl-sbalnae 33882 wl-mo3t 33895 wl-ax11-lem5 33903 wl-ax11-lem8 33906 cotrintab 38755 pm11.57 39422 axc5c4c711toc7 39437 axc11next 39439 pm14.122b 39456 dropab1 39482 dropab2 39483 ax6e2eq 39594 |
Copyright terms: Public domain | W3C validator |