| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sps | Structured version Visualization version GIF version | ||
| Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) |
| Ref | Expression |
|---|---|
| sps.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sps | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2184 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2sp 2187 19.2g 2189 nfim1 2200 axc16g 2261 drsb2 2267 axc11r 2366 axc15 2420 equvel 2454 sb4a 2478 dfsb1 2479 dfsb2 2491 drsb1 2493 nfsb4t 2497 sbco2 2509 sbco3 2511 sb9 2517 sbal1 2526 sbal2 2527 eujustALT 2565 2eu6 2650 ralcom2 3342 ceqsalgALT 3475 reu6 3688 rexdifi 4103 dfnfc2 4883 nfnid 5317 eusvnfb 5335 mosubopt 5457 dfid3 5521 fv3 6844 fvmptt 6954 fnoprabg 7476 fprlem1 8240 pssnn 9092 frrlem15 9672 kmlem16 10079 nd3 10502 axunndlem1 10508 axunnd 10509 axpowndlem1 10510 axregndlem1 10515 axregndlem2 10516 axacndlem5 10524 axsepg2 35048 axsepg2ALT 35049 axnulg 35058 fundmpss 35739 nalfal 36376 unisym1 36396 bj-sbsb 36810 wl-nfimf1 37499 wl-axc11r 37503 wl-dral1d 37504 wl-nfs1t 37510 wl-sb8t 37525 wl-sbhbt 37527 wl-equsb4 37530 wl-sbalnae 37535 wl-2spsbbi 37538 wl-mo3t 37549 wl-ax11-lem5 37562 wl-ax11-lem8 37565 cotrintab 43587 pm11.57 44362 axc5c4c711toc7 44377 axc11next 44379 pm14.122b 44396 dropab1 44420 dropab2 44421 ax6e2eq 44531 |
| Copyright terms: Public domain | W3C validator |