| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sps | Structured version Visualization version GIF version | ||
| Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) |
| Ref | Expression |
|---|---|
| sps.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sps | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2183 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2sp 2186 19.2g 2188 nfim1 2199 axc16g 2260 drsb2 2266 axc11r 2370 axc15 2426 equvel 2460 sb4a 2484 dfsb1 2485 dfsb2 2497 drsb1 2499 nfsb4t 2503 sbco2 2515 sbco3 2517 sb9 2523 sbal1 2532 sbal2 2533 eujustALT 2571 2eu6 2656 ralcom2 3356 ceqsalgALT 3497 reu6 3709 sbcal 3825 rexdifi 4125 dfnfc2 4905 nfnid 5345 eusvnfb 5363 mosubopt 5485 dfid3 5551 fv3 6894 fvmptt 7006 fnoprabg 7530 fprlem1 8299 wfrlem5OLD 8327 pssnn 9182 frrlem15 9771 kmlem16 10180 nd3 10603 axunndlem1 10609 axunnd 10610 axpowndlem1 10611 axregndlem1 10616 axregndlem2 10617 axacndlem5 10625 axsepg2 35113 axsepg2ALT 35114 axnulg 35123 fundmpss 35784 nalfal 36421 unisym1 36441 bj-sbsb 36855 wl-nfimf1 37544 wl-axc11r 37548 wl-dral1d 37549 wl-nfs1t 37555 wl-sb8t 37570 wl-sbhbt 37572 wl-equsb4 37575 wl-sbalnae 37580 wl-2spsbbi 37583 wl-mo3t 37594 wl-ax11-lem5 37607 wl-ax11-lem8 37610 cotrintab 43638 pm11.57 44413 axc5c4c711toc7 44428 axc11next 44430 pm14.122b 44447 dropab1 44471 dropab2 44472 ax6e2eq 44582 |
| Copyright terms: Public domain | W3C validator |