| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sps | Structured version Visualization version GIF version | ||
| Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) |
| Ref | Expression |
|---|---|
| sps.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sps | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2184 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2sp 2187 19.2g 2189 nfim1 2200 axc16g 2261 drsb2 2267 axc11r 2366 axc15 2420 equvel 2454 sb4a 2478 dfsb1 2479 dfsb2 2491 drsb1 2493 nfsb4t 2497 sbco2 2509 sbco3 2511 sb9 2517 sbal1 2526 sbal2 2527 eujustALT 2565 2eu6 2650 ralcom2 3351 ceqsalgALT 3484 reu6 3697 rexdifi 4113 dfnfc2 4893 nfnid 5330 eusvnfb 5348 mosubopt 5470 dfid3 5536 fv3 6876 fvmptt 6988 fnoprabg 7512 fprlem1 8279 pssnn 9132 frrlem15 9710 kmlem16 10119 nd3 10542 axunndlem1 10548 axunnd 10549 axpowndlem1 10550 axregndlem1 10555 axregndlem2 10556 axacndlem5 10564 axsepg2 35072 axsepg2ALT 35073 axnulg 35082 fundmpss 35754 nalfal 36391 unisym1 36411 bj-sbsb 36825 wl-nfimf1 37514 wl-axc11r 37518 wl-dral1d 37519 wl-nfs1t 37525 wl-sb8t 37540 wl-sbhbt 37542 wl-equsb4 37545 wl-sbalnae 37550 wl-2spsbbi 37553 wl-mo3t 37564 wl-ax11-lem5 37577 wl-ax11-lem8 37580 cotrintab 43603 pm11.57 44378 axc5c4c711toc7 44393 axc11next 44395 pm14.122b 44412 dropab1 44436 dropab2 44437 ax6e2eq 44547 |
| Copyright terms: Public domain | W3C validator |