| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sps | Structured version Visualization version GIF version | ||
| Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) |
| Ref | Expression |
|---|---|
| sps.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sps | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2188 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 2sp 2191 19.2g 2193 nfim1 2204 axc16g 2265 drsb2 2271 axc11r 2370 axc15 2424 equvel 2458 sb4a 2482 dfsb1 2483 dfsb2 2495 drsb1 2497 nfsb4t 2501 sbco2 2513 sbco3 2515 sb9 2521 sbal1 2530 sbal2 2531 eujustALT 2569 2eu6 2654 ralcom2 3344 ceqsalgALT 3474 reu6 3681 rexdifi 4099 dfnfc2 4880 nfnid 5315 eusvnfb 5333 mosubopt 5453 dfid3 5517 fv3 6846 fvmptt 6955 fnoprabg 7475 fprlem1 8236 pssnn 9085 frrlem15 9657 kmlem16 10064 nd3 10487 axunndlem1 10493 axunnd 10494 axpowndlem1 10495 axregndlem1 10500 axregndlem2 10501 axacndlem5 10509 axsepg2 35115 axsepg2ALT 35116 axnulg 35140 fundmpss 35832 nalfal 36468 unisym1 36488 bj-sbsb 36902 wl-nfimf1 37591 wl-axc11r 37595 wl-dral1d 37596 wl-nfs1t 37602 wl-sb8t 37617 wl-sbhbt 37619 wl-equsb4 37622 wl-sbalnae 37627 wl-2spsbbi 37630 wl-mo3t 37641 cotrintab 43731 pm11.57 44506 axc5c4c711toc7 44521 axc11next 44523 pm14.122b 44540 dropab1 44563 dropab2 44564 ax6e2eq 44674 |
| Copyright terms: Public domain | W3C validator |