![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sps | Structured version Visualization version GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2184 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 2sp 2187 19.2g 2189 nfim1 2200 axc16g 2261 drsb2 2267 axc11r 2374 axc15 2430 equvel 2464 sb4a 2488 dfsb1 2489 dfsb2 2501 drsb1 2503 nfsb4t 2507 sbco2 2519 sbco3 2521 sb9 2527 sbal1 2536 sbal2 2537 eujustALT 2575 2eu6 2660 ralcom2 3385 ceqsalgALT 3526 reu6 3748 sbcal 3868 rexdifi 4173 dfnfc2 4953 nfnid 5393 eusvnfb 5411 mosubopt 5529 dfid3 5596 fv3 6938 fvmptt 7049 fnoprabg 7573 fprlem1 8341 wfrlem5OLD 8369 pssnn 9234 frrlem15 9826 kmlem16 10235 nd3 10658 axunndlem1 10664 axunnd 10665 axpowndlem1 10666 axregndlem1 10671 axregndlem2 10672 axacndlem5 10680 axsepg2 35058 axsepg2ALT 35059 axnulg 35068 fundmpss 35730 nalfal 36369 unisym1 36389 bj-sbsb 36803 wl-nfimf1 37480 wl-axc11r 37484 wl-dral1d 37485 wl-nfs1t 37491 wl-sb8t 37506 wl-sbhbt 37508 wl-equsb4 37511 wl-sbalnae 37516 wl-2spsbbi 37519 wl-mo3t 37530 wl-ax11-lem5 37543 wl-ax11-lem8 37546 cotrintab 43576 pm11.57 44358 axc5c4c711toc7 44373 axc11next 44375 pm14.122b 44392 dropab1 44416 dropab2 44417 ax6e2eq 44528 |
Copyright terms: Public domain | W3C validator |