| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sps | Structured version Visualization version GIF version | ||
| Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) |
| Ref | Expression |
|---|---|
| sps.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sps | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2184 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2sp 2187 19.2g 2189 nfim1 2200 axc16g 2261 drsb2 2267 axc11r 2367 axc15 2421 equvel 2455 sb4a 2479 dfsb1 2480 dfsb2 2492 drsb1 2494 nfsb4t 2498 sbco2 2510 sbco3 2512 sb9 2518 sbal1 2527 sbal2 2528 eujustALT 2566 2eu6 2651 ralcom2 3353 ceqsalgALT 3487 reu6 3700 rexdifi 4116 dfnfc2 4896 nfnid 5333 eusvnfb 5351 mosubopt 5473 dfid3 5539 fv3 6879 fvmptt 6991 fnoprabg 7515 fprlem1 8282 pssnn 9138 frrlem15 9717 kmlem16 10126 nd3 10549 axunndlem1 10555 axunnd 10556 axpowndlem1 10557 axregndlem1 10562 axregndlem2 10563 axacndlem5 10571 axsepg2 35079 axsepg2ALT 35080 axnulg 35089 fundmpss 35761 nalfal 36398 unisym1 36418 bj-sbsb 36832 wl-nfimf1 37521 wl-axc11r 37525 wl-dral1d 37526 wl-nfs1t 37532 wl-sb8t 37547 wl-sbhbt 37549 wl-equsb4 37552 wl-sbalnae 37557 wl-2spsbbi 37560 wl-mo3t 37571 wl-ax11-lem5 37584 wl-ax11-lem8 37587 cotrintab 43610 pm11.57 44385 axc5c4c711toc7 44400 axc11next 44402 pm14.122b 44419 dropab1 44443 dropab2 44444 ax6e2eq 44554 |
| Copyright terms: Public domain | W3C validator |