Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sps | Structured version Visualization version GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2178 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 2sp 2181 19.2g 2183 nfim1 2195 axc16g 2255 drsb2 2261 axc11r 2366 axc15 2422 equvel 2456 sb1OLD 2482 sb4a 2484 dfsb1 2485 dfsb2 2497 drsb1 2499 nfsb4t 2503 sbco2 2515 sbco3 2517 sb9 2523 sbal1 2533 sbal2 2534 eujustALT 2572 2eu6 2658 ralcom2 3288 ceqsalgALT 3455 reu6 3656 sbcal 3776 rexdifi 4076 reldisjOLD 4383 dfnfc2 4860 nfnid 5293 eusvnfb 5311 mosubopt 5418 dfid3 5483 fv3 6774 fvmptt 6877 fnoprabg 7375 fprlem1 8087 wfrlem5OLD 8115 pssnn 8913 pssnnOLD 8969 frrlem15 9446 kmlem16 9852 nd3 10276 axunndlem1 10282 axunnd 10283 axpowndlem1 10284 axregndlem1 10289 axregndlem2 10290 axacndlem5 10298 fundmpss 33646 nalfal 34519 unisym1 34539 bj-sbsb 34947 wl-nfimf1 35612 wl-axc11r 35616 wl-dral1d 35617 wl-nfs1t 35623 wl-sb8t 35634 wl-sbhbt 35636 wl-equsb4 35639 wl-sbalnae 35644 wl-2spsbbi 35647 wl-mo3t 35658 wl-ax11-lem5 35667 wl-ax11-lem8 35670 cotrintab 41111 pm11.57 41896 axc5c4c711toc7 41911 axc11next 41913 pm14.122b 41930 dropab1 41954 dropab2 41955 ax6e2eq 42066 |
Copyright terms: Public domain | W3C validator |