![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sps | Structured version Visualization version GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2181 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: 2sp 2184 19.2g 2186 nfim1 2197 axc16g 2258 drsb2 2264 axc11r 2369 axc15 2425 equvel 2459 sb4a 2483 dfsb1 2484 dfsb2 2496 drsb1 2498 nfsb4t 2502 sbco2 2514 sbco3 2516 sb9 2522 sbal1 2531 sbal2 2532 eujustALT 2570 2eu6 2655 ralcom2 3375 ceqsalgALT 3516 reu6 3735 sbcal 3855 rexdifi 4160 dfnfc2 4934 nfnid 5381 eusvnfb 5399 mosubopt 5520 dfid3 5586 fv3 6925 fvmptt 7036 fnoprabg 7556 fprlem1 8324 wfrlem5OLD 8352 pssnn 9207 frrlem15 9795 kmlem16 10204 nd3 10627 axunndlem1 10633 axunnd 10634 axpowndlem1 10635 axregndlem1 10640 axregndlem2 10641 axacndlem5 10649 axsepg2 35075 axsepg2ALT 35076 axnulg 35085 fundmpss 35748 nalfal 36386 unisym1 36406 bj-sbsb 36820 wl-nfimf1 37507 wl-axc11r 37511 wl-dral1d 37512 wl-nfs1t 37518 wl-sb8t 37533 wl-sbhbt 37535 wl-equsb4 37538 wl-sbalnae 37543 wl-2spsbbi 37546 wl-mo3t 37557 wl-ax11-lem5 37570 wl-ax11-lem8 37573 cotrintab 43604 pm11.57 44385 axc5c4c711toc7 44400 axc11next 44402 pm14.122b 44419 dropab1 44443 dropab2 44444 ax6e2eq 44555 |
Copyright terms: Public domain | W3C validator |