| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.31v | Structured version Visualization version GIF version | ||
| Description: Version of 19.31 2235 with a disjoint variable condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020.) |
| Ref | Expression |
|---|---|
| 19.31v | ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.32v 1940 | . 2 ⊢ (∀𝑥(𝜓 ∨ 𝜑) ↔ (𝜓 ∨ ∀𝑥𝜑)) | |
| 2 | orcom 870 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ ∀𝑥(𝜓 ∨ 𝜑)) |
| 4 | orcom 870 | . 2 ⊢ ((∀𝑥𝜑 ∨ 𝜓) ↔ (𝜓 ∨ ∀𝑥𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 |
| This theorem is referenced by: 19.31vv 44383 |
| Copyright terms: Public domain | W3C validator |