| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version GIF version | ||
| Description: Version of 19.23 2214 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1968. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1835 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | ax5e 1913 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
| 4 | ax-5 1911 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 5 | 4 | imim2i 16 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 6 | 19.38 1840 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 8 | 3, 7 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 19.23vv 1944 pm11.53v 1945 equsv 2004 sb4b 2475 2mo2 2642 ceqsalv 3476 clel2g 3609 clel4g 3613 elabd2 3620 elabgt 3622 elabgtOLD 3623 elabgtOLDOLD 3624 euind 3678 reuind 3707 sbcg 3809 ralsng 4623 snssb 4730 unissb 4886 disjor 5068 dftr2 5195 ssrelrel 5731 cotrg 6053 fununi 6551 dff13 7183 dffi2 9302 aceq2 10005 psgnunilem4 19404 metcld 25228 metcld2 25229 isch2 31195 disjorf 32551 funcnv5mpt 32642 bnj1052 34979 bnj1030 34991 dfon2lem8 35824 bj-ssbeq 36687 bj-ssbid2ALT 36697 bj-sblem1 36876 bj-sblem2 36877 bj-sblem 36878 wl-equsalvw 37572 ineleq 38382 cocossss 38473 cossssid3 38506 trcoss2 38521 elmapintrab 43609 elinintrab 43610 undmrnresiss 43637 elintima 43686 relexp0eq 43734 dfhe3 43808 ismnuprim 44327 pm10.52 44398 truniALT 44574 tpid3gVD 44874 truniALTVD 44910 onfrALTVD 44923 unisnALT 44958 |
| Copyright terms: Public domain | W3C validator |