![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version GIF version |
Description: Version of 19.23 2205 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1972. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1837 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | ax5e 1916 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
4 | ax-5 1914 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
5 | 4 | imim2i 16 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
6 | 19.38 1842 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
8 | 3, 7 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 19.23vv 1947 pm11.53v 1948 equsv 2007 sb4b 2475 2mo2 2644 ceqsalv 3512 clel2g 3648 clel4g 3653 elabd2 3661 elabgt 3663 elabg 3667 euind 3721 reuind 3750 sbcg 3857 ralsng 4678 snssb 4787 unissb 4944 unissbOLD 4945 disjor 5129 dftr2 5268 ssrelrel 5797 cotrg 6109 cotrgOLD 6110 cotrgOLDOLD 6111 dffun2OLDOLD 6556 fununi 6624 dff13 7254 dffi2 9418 aceq2 10114 psgnunilem4 19365 metcld 24823 metcld2 24824 isch2 30507 disjorf 31841 funcnv5mpt 31924 bnj1052 34017 bnj1030 34029 dfon2lem8 34793 bj-ssbeq 35578 bj-ssbid2ALT 35588 bj-sblem1 35769 bj-sblem2 35770 bj-sblem 35771 wl-equsalvw 36455 ineleq 37271 cocossss 37354 cossssid3 37387 trcoss2 37402 elmapintrab 42375 elinintrab 42376 undmrnresiss 42403 elintima 42452 relexp0eq 42500 dfhe3 42574 ismnuprim 43101 pm10.52 43172 truniALT 43350 tpid3gVD 43651 truniALTVD 43687 onfrALTVD 43700 unisnALT 43735 |
Copyright terms: Public domain | W3C validator |