MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23v Structured version   Visualization version   GIF version

Theorem 19.23v 1940
Description: Version of 19.23 2209 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1965. (Revised by Rohan Ridenour, 15-Apr-2022.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 exim 1831 . . 3 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
2 ax5e 1910 . . 3 (∃𝑥𝜓𝜓)
31, 2syl6 35 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓))
4 ax-5 1908 . . . 4 (𝜓 → ∀𝑥𝜓)
54imim2i 16 . . 3 ((∃𝑥𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
6 19.38 1836 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
75, 6syl 17 . 2 ((∃𝑥𝜑𝜓) → ∀𝑥(𝜑𝜓))
83, 7impbii 209 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908
This theorem depends on definitions:  df-bi 207  df-ex 1777
This theorem is referenced by:  19.23vv  1941  pm11.53v  1942  equsv  2000  sb4b  2478  2mo2  2645  ceqsalv  3519  clel2g  3659  clel4g  3663  elabd2  3670  elabgt  3672  elabgtOLD  3673  elabg  3677  euind  3733  reuind  3762  sbcg  3870  ralsng  4680  snssb  4787  unissb  4944  unissbOLD  4945  disjor  5130  dftr2  5267  ssrelrel  5809  cotrg  6130  cotrgOLD  6131  cotrgOLDOLD  6132  dffun2OLDOLD  6575  fununi  6643  dff13  7275  dffi2  9461  aceq2  10157  psgnunilem4  19530  metcld  25354  metcld2  25355  isch2  31252  disjorf  32599  funcnv5mpt  32685  bnj1052  34968  bnj1030  34980  dfon2lem8  35772  bj-ssbeq  36636  bj-ssbid2ALT  36646  bj-sblem1  36825  bj-sblem2  36826  bj-sblem  36827  wl-equsalvw  37519  ineleq  38336  cocossss  38418  cossssid3  38451  trcoss2  38466  elmapintrab  43566  elinintrab  43567  undmrnresiss  43594  elintima  43643  relexp0eq  43691  dfhe3  43765  ismnuprim  44290  pm10.52  44361  truniALT  44539  tpid3gVD  44840  truniALTVD  44876  onfrALTVD  44889  unisnALT  44924
  Copyright terms: Public domain W3C validator