![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version GIF version |
Description: Version of 19.23 2202 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1969. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1834 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | ax5e 1913 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
4 | ax-5 1911 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
5 | 4 | imim2i 16 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
6 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
8 | 3, 7 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-ex 1780 |
This theorem is referenced by: 19.23vv 1944 pm11.53v 1945 equsv 2004 sb4b 2472 2mo2 2641 ceqsalv 3510 clel2g 3648 clel4g 3653 elabd2 3661 elabgt 3663 elabg 3667 euind 3721 reuind 3750 sbcg 3857 ralsng 4678 snssb 4787 unissb 4944 unissbOLD 4945 disjor 5129 dftr2 5268 ssrelrel 5797 cotrg 6109 cotrgOLD 6110 cotrgOLDOLD 6111 dffun2OLDOLD 6556 fununi 6624 dff13 7258 dffi2 9422 aceq2 10118 psgnunilem4 19408 metcld 25056 metcld2 25057 isch2 30741 disjorf 32075 funcnv5mpt 32158 bnj1052 34282 bnj1030 34294 dfon2lem8 35064 bj-ssbeq 35835 bj-ssbid2ALT 35845 bj-sblem1 36026 bj-sblem2 36027 bj-sblem 36028 wl-equsalvw 36712 ineleq 37528 cocossss 37611 cossssid3 37644 trcoss2 37659 elmapintrab 42631 elinintrab 42632 undmrnresiss 42659 elintima 42708 relexp0eq 42756 dfhe3 42830 ismnuprim 43357 pm10.52 43428 truniALT 43606 tpid3gVD 43907 truniALTVD 43943 onfrALTVD 43956 unisnALT 43991 |
Copyright terms: Public domain | W3C validator |