MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23v Structured version   Visualization version   GIF version

Theorem 19.23v 1943
Description: Version of 19.23 2214 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1968. (Revised by Rohan Ridenour, 15-Apr-2022.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 exim 1835 . . 3 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
2 ax5e 1913 . . 3 (∃𝑥𝜓𝜓)
31, 2syl6 35 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓))
4 ax-5 1911 . . . 4 (𝜓 → ∀𝑥𝜓)
54imim2i 16 . . 3 ((∃𝑥𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
6 19.38 1840 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
75, 6syl 17 . 2 ((∃𝑥𝜑𝜓) → ∀𝑥(𝜑𝜓))
83, 7impbii 209 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  19.23vv  1944  pm11.53v  1945  equsv  2004  sb4b  2475  2mo2  2642  ceqsalv  3476  clel2g  3609  clel4g  3613  elabd2  3620  elabgt  3622  elabgtOLD  3623  elabgtOLDOLD  3624  euind  3678  reuind  3707  sbcg  3809  ralsng  4623  snssb  4730  unissb  4886  disjor  5068  dftr2  5195  ssrelrel  5731  cotrg  6053  fununi  6551  dff13  7183  dffi2  9302  aceq2  10005  psgnunilem4  19404  metcld  25228  metcld2  25229  isch2  31195  disjorf  32551  funcnv5mpt  32642  bnj1052  34979  bnj1030  34991  dfon2lem8  35824  bj-ssbeq  36687  bj-ssbid2ALT  36697  bj-sblem1  36876  bj-sblem2  36877  bj-sblem  36878  wl-equsalvw  37572  ineleq  38382  cocossss  38473  cossssid3  38506  trcoss2  38521  elmapintrab  43609  elinintrab  43610  undmrnresiss  43637  elintima  43686  relexp0eq  43734  dfhe3  43808  ismnuprim  44327  pm10.52  44398  truniALT  44574  tpid3gVD  44874  truniALTVD  44910  onfrALTVD  44923  unisnALT  44958
  Copyright terms: Public domain W3C validator