| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version GIF version | ||
| Description: Version of 19.23 2210 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1966. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1833 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | ax5e 1911 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
| 4 | ax-5 1909 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 5 | 4 | imim2i 16 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 6 | 19.38 1838 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 8 | 3, 7 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: 19.23vv 1942 pm11.53v 1943 equsv 2001 sb4b 2479 2mo2 2646 ceqsalv 3520 clel2g 3658 clel4g 3662 elabd2 3669 elabgt 3671 elabgtOLD 3672 elabg 3675 euind 3729 reuind 3758 sbcg 3862 ralsng 4674 snssb 4781 unissb 4938 unissbOLD 4939 disjor 5124 dftr2 5260 ssrelrel 5805 cotrg 6126 cotrgOLD 6127 cotrgOLDOLD 6128 dffun2OLDOLD 6572 fununi 6640 dff13 7276 dffi2 9464 aceq2 10160 psgnunilem4 19516 metcld 25341 metcld2 25342 isch2 31243 disjorf 32593 funcnv5mpt 32679 bnj1052 34990 bnj1030 35002 dfon2lem8 35792 bj-ssbeq 36655 bj-ssbid2ALT 36665 bj-sblem1 36844 bj-sblem2 36845 bj-sblem 36846 wl-equsalvw 37540 ineleq 38356 cocossss 38438 cossssid3 38471 trcoss2 38486 elmapintrab 43594 elinintrab 43595 undmrnresiss 43622 elintima 43671 relexp0eq 43719 dfhe3 43793 ismnuprim 44318 pm10.52 44389 truniALT 44566 tpid3gVD 44867 truniALTVD 44903 onfrALTVD 44916 unisnALT 44951 |
| Copyright terms: Public domain | W3C validator |