| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version GIF version | ||
| Description: Version of 19.23 2212 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1967. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1834 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | ax5e 1912 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
| 4 | ax-5 1910 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 5 | 4 | imim2i 16 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 6 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 8 | 3, 7 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.23vv 1943 pm11.53v 1944 equsv 2003 sb4b 2473 2mo2 2640 ceqsalv 3484 clel2g 3622 clel4g 3626 elabd2 3633 elabgt 3635 elabgtOLD 3636 elabgtOLDOLD 3637 euind 3692 reuind 3721 sbcg 3823 ralsng 4635 snssb 4742 unissb 4899 unissbOLD 4900 disjor 5084 dftr2 5211 ssrelrel 5750 cotrg 6069 cotrgOLD 6070 fununi 6575 dff13 7211 dffi2 9350 aceq2 10048 psgnunilem4 19403 metcld 25182 metcld2 25183 isch2 31125 disjorf 32481 funcnv5mpt 32565 bnj1052 34938 bnj1030 34950 dfon2lem8 35751 bj-ssbeq 36614 bj-ssbid2ALT 36624 bj-sblem1 36803 bj-sblem2 36804 bj-sblem 36805 wl-equsalvw 37499 ineleq 38309 cocossss 38400 cossssid3 38433 trcoss2 38448 elmapintrab 43538 elinintrab 43539 undmrnresiss 43566 elintima 43615 relexp0eq 43663 dfhe3 43737 ismnuprim 44256 pm10.52 44327 truniALT 44504 tpid3gVD 44804 truniALTVD 44840 onfrALTVD 44853 unisnALT 44888 |
| Copyright terms: Public domain | W3C validator |