![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version GIF version |
Description: Version of 19.23 2212 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1967. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1832 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | ax5e 1911 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
4 | ax-5 1909 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
5 | 4 | imim2i 16 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
6 | 19.38 1837 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
8 | 3, 7 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 19.23vv 1942 pm11.53v 1943 equsv 2002 sb4b 2483 2mo2 2650 ceqsalv 3529 clel2g 3672 clel4g 3676 elabd2 3683 elabgt 3685 elabgtOLD 3686 elabg 3690 euind 3746 reuind 3775 sbcg 3883 ralsng 4697 snssb 4807 unissb 4963 unissbOLD 4964 disjor 5148 dftr2 5285 ssrelrel 5820 cotrg 6139 cotrgOLD 6140 cotrgOLDOLD 6141 dffun2OLDOLD 6585 fununi 6653 dff13 7292 dffi2 9492 aceq2 10188 psgnunilem4 19539 metcld 25359 metcld2 25360 isch2 31255 disjorf 32601 funcnv5mpt 32686 bnj1052 34951 bnj1030 34963 dfon2lem8 35754 bj-ssbeq 36619 bj-ssbid2ALT 36629 bj-sblem1 36808 bj-sblem2 36809 bj-sblem 36810 wl-equsalvw 37492 ineleq 38310 cocossss 38392 cossssid3 38425 trcoss2 38440 elmapintrab 43538 elinintrab 43539 undmrnresiss 43566 elintima 43615 relexp0eq 43663 dfhe3 43737 ismnuprim 44263 pm10.52 44334 truniALT 44512 tpid3gVD 44813 truniALTVD 44849 onfrALTVD 44862 unisnALT 44897 |
Copyright terms: Public domain | W3C validator |