| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version GIF version | ||
| Description: Version of 19.23 2212 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1967. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1834 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | ax5e 1912 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
| 4 | ax-5 1910 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 5 | 4 | imim2i 16 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 6 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 8 | 3, 7 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.23vv 1943 pm11.53v 1944 equsv 2003 sb4b 2473 2mo2 2640 ceqsalv 3487 clel2g 3625 clel4g 3629 elabd2 3636 elabgt 3638 elabgtOLD 3639 elabgtOLDOLD 3640 euind 3695 reuind 3724 sbcg 3826 ralsng 4639 snssb 4746 unissb 4903 unissbOLD 4904 disjor 5089 dftr2 5216 ssrelrel 5759 cotrg 6080 cotrgOLD 6081 cotrgOLDOLD 6082 dffun2OLDOLD 6523 fununi 6591 dff13 7229 dffi2 9374 aceq2 10072 psgnunilem4 19427 metcld 25206 metcld2 25207 isch2 31152 disjorf 32508 funcnv5mpt 32592 bnj1052 34965 bnj1030 34977 dfon2lem8 35778 bj-ssbeq 36641 bj-ssbid2ALT 36651 bj-sblem1 36830 bj-sblem2 36831 bj-sblem 36832 wl-equsalvw 37526 ineleq 38336 cocossss 38427 cossssid3 38460 trcoss2 38475 elmapintrab 43565 elinintrab 43566 undmrnresiss 43593 elintima 43642 relexp0eq 43690 dfhe3 43764 ismnuprim 44283 pm10.52 44354 truniALT 44531 tpid3gVD 44831 truniALTVD 44867 onfrALTVD 44880 unisnALT 44915 |
| Copyright terms: Public domain | W3C validator |