![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version GIF version |
Description: Version of 19.23 2209 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1965. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1831 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | ax5e 1910 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
4 | ax-5 1908 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
5 | 4 | imim2i 16 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
6 | 19.38 1836 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
8 | 3, 7 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: 19.23vv 1941 pm11.53v 1942 equsv 2000 sb4b 2478 2mo2 2645 ceqsalv 3519 clel2g 3659 clel4g 3663 elabd2 3670 elabgt 3672 elabgtOLD 3673 elabg 3677 euind 3733 reuind 3762 sbcg 3870 ralsng 4680 snssb 4787 unissb 4944 unissbOLD 4945 disjor 5130 dftr2 5267 ssrelrel 5809 cotrg 6130 cotrgOLD 6131 cotrgOLDOLD 6132 dffun2OLDOLD 6575 fununi 6643 dff13 7275 dffi2 9461 aceq2 10157 psgnunilem4 19530 metcld 25354 metcld2 25355 isch2 31252 disjorf 32599 funcnv5mpt 32685 bnj1052 34968 bnj1030 34980 dfon2lem8 35772 bj-ssbeq 36636 bj-ssbid2ALT 36646 bj-sblem1 36825 bj-sblem2 36826 bj-sblem 36827 wl-equsalvw 37519 ineleq 38336 cocossss 38418 cossssid3 38451 trcoss2 38466 elmapintrab 43566 elinintrab 43567 undmrnresiss 43594 elintima 43643 relexp0eq 43691 dfhe3 43765 ismnuprim 44290 pm10.52 44361 truniALT 44539 tpid3gVD 44840 truniALTVD 44876 onfrALTVD 44889 unisnALT 44924 |
Copyright terms: Public domain | W3C validator |