| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version GIF version | ||
| Description: Version of 19.23 2212 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1967. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1834 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | ax5e 1912 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
| 4 | ax-5 1910 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 5 | 4 | imim2i 16 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 6 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 8 | 3, 7 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.23vv 1943 pm11.53v 1944 equsv 2003 sb4b 2473 2mo2 2640 ceqsalv 3476 clel2g 3614 clel4g 3618 elabd2 3625 elabgt 3627 elabgtOLD 3628 elabgtOLDOLD 3629 euind 3684 reuind 3713 sbcg 3815 ralsng 4627 snssb 4734 unissb 4890 disjor 5074 dftr2 5201 ssrelrel 5739 cotrg 6060 fununi 6557 dff13 7191 dffi2 9313 aceq2 10013 psgnunilem4 19376 metcld 25204 metcld2 25205 isch2 31167 disjorf 32523 funcnv5mpt 32611 bnj1052 34942 bnj1030 34954 dfon2lem8 35764 bj-ssbeq 36627 bj-ssbid2ALT 36637 bj-sblem1 36816 bj-sblem2 36817 bj-sblem 36818 wl-equsalvw 37512 ineleq 38322 cocossss 38413 cossssid3 38446 trcoss2 38461 elmapintrab 43549 elinintrab 43550 undmrnresiss 43577 elintima 43626 relexp0eq 43674 dfhe3 43748 ismnuprim 44267 pm10.52 44338 truniALT 44515 tpid3gVD 44815 truniALTVD 44851 onfrALTVD 44864 unisnALT 44899 |
| Copyright terms: Public domain | W3C validator |