Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version GIF version |
Description: Version of 19.23 2199 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1967. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1832 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | ax5e 1911 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
4 | ax-5 1909 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
5 | 4 | imim2i 16 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
6 | 19.38 1837 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
8 | 3, 7 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 206 df-ex 1778 |
This theorem is referenced by: 19.23vv 1942 pm11.53v 1943 equsv 2002 sbequ2OLD 2237 sb4b 2470 sb4bOLD 2471 2mo2 2644 ceqsalv 3469 clel2g 3590 clel4g 3595 elabd2 3603 elabgt 3605 elabg 3609 euind 3661 reuind 3690 sbcg 3797 ralsng 4612 unissb 4876 disjor 5057 dftr2 5196 ssrelrel 5709 cotrg 6018 cotrgOLD 6019 dffun2OLD 6458 fununi 6526 dff13 7148 dffi2 9210 aceq2 9903 psgnunilem4 19133 metcld 24498 metcld2 24499 isch2 29613 disjorf 30946 funcnv5mpt 31033 bnj1052 32983 bnj1030 32995 dfon2lem8 33794 bj-ssbeq 34862 bj-ssbid2ALT 34872 bj-sblem1 35054 bj-sblem2 35055 bj-sblem 35056 wl-equsalvw 35725 ineleq 36512 cocossss 36585 cossssid3 36613 trcoss2 36628 elmapintrab 41208 elinintrab 41209 undmrnresiss 41236 elintima 41285 relexp0eq 41333 dfhe3 41407 ismnuprim 41936 pm10.52 42007 truniALT 42185 tpid3gVD 42486 truniALTVD 42522 onfrALTVD 42535 unisnALT 42570 |
Copyright terms: Public domain | W3C validator |