Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version GIF version |
Description: Version of 19.23 2207 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) Remove dependency on ax-6 1972. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.23v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1837 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | ax5e 1916 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
4 | ax-5 1914 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
5 | 4 | imim2i 16 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
6 | 19.38 1842 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
8 | 3, 7 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 19.23vv 1947 pm11.53v 1948 equsv 2007 sbequ2OLD 2245 sb4b 2475 sb4bOLD 2476 2mo2 2649 ceqsalv 3457 clel2g 3581 clel4g 3586 elabd2 3594 elabgt 3596 elabg 3600 euind 3654 reuind 3683 sbcg 3791 ralsng 4606 unissb 4870 disjor 5050 dftr2 5189 ssrelrel 5695 cotrg 6005 dffun2 6428 fununi 6493 dff13 7109 dffi2 9112 aceq2 9806 psgnunilem4 19020 metcld 24375 metcld2 24376 isch2 29486 disjorf 30819 funcnv5mpt 30907 bnj1052 32855 bnj1030 32867 dfon2lem8 33672 bj-ssbeq 34761 bj-ssbid2ALT 34771 bj-sblem1 34953 bj-sblem2 34954 bj-sblem 34955 wl-equsalvw 35624 ineleq 36413 cocossss 36486 cossssid3 36514 trcoss2 36529 elmapintrab 41073 elinintrab 41074 undmrnresiss 41101 elintima 41150 relexp0eq 41198 dfhe3 41272 ismnuprim 41801 pm10.52 41872 truniALT 42050 tpid3gVD 42351 truniALTVD 42387 onfrALTVD 42400 unisnALT 42435 |
Copyright terms: Public domain | W3C validator |