MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.32v Structured version   Visualization version   GIF version

Theorem 19.32v 1944
Description: Version of 19.32 2229 with a disjoint variable condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020.)
Assertion
Ref Expression
19.32v (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.32v
StepHypRef Expression
1 19.21v 1943 . 2 (∀𝑥𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓))
2 df-or 844 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
32albii 1823 . 2 (∀𝑥(𝜑𝜓) ↔ ∀𝑥𝜑𝜓))
4 df-or 844 . 2 ((𝜑 ∨ ∀𝑥𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓))
51, 3, 43bitr4i 302 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1784
This theorem is referenced by:  19.31v  1945  iresn0n0  5952  pm10.12  41865
  Copyright terms: Public domain W3C validator