|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.32v | Structured version Visualization version GIF version | ||
| Description: Version of 19.32 2233 with a disjoint variable condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020.) | 
| Ref | Expression | 
|---|---|
| 19.32v | ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.21v 1939 | . 2 ⊢ (∀𝑥(¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)) | |
| 2 | df-or 849 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ ∀𝑥(¬ 𝜑 → 𝜓)) | 
| 4 | df-or 849 | . 2 ⊢ ((𝜑 ∨ ∀𝑥𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 848 ∀wal 1538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-or 849 df-ex 1780 | 
| This theorem is referenced by: 19.31v 1941 iresn0n0 6072 pm10.12 44377 | 
| Copyright terms: Public domain | W3C validator |