MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.33 Structured version   Visualization version   GIF version

Theorem 19.33 1888
Description: Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
19.33 ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))

Proof of Theorem 19.33
StepHypRef Expression
1 orc 863 . . 3 (𝜑 → (𝜑𝜓))
21alimi 1815 . 2 (∀𝑥𝜑 → ∀𝑥(𝜑𝜓))
3 olc 864 . . 3 (𝜓 → (𝜑𝜓))
43alimi 1815 . 2 (∀𝑥𝜓 → ∀𝑥(𝜑𝜓))
52, 4jaoi 853 1 ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  19.33b  1889  bj-nnfor  34859  bj-nnford  34860
  Copyright terms: Public domain W3C validator