Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.33 | Structured version Visualization version GIF version |
Description: Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
19.33 | ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 864 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
2 | 1 | alimi 1814 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜑 ∨ 𝜓)) |
3 | olc 865 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
4 | 3 | alimi 1814 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 ∨ 𝜓)) |
5 | 2, 4 | jaoi 854 | 1 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: 19.33b 1888 bj-nnfor 34932 bj-nnford 34933 |
Copyright terms: Public domain | W3C validator |