|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.33 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) | 
| Ref | Expression | 
|---|---|
| 19.33 | ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc 867 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 2 | 1 | alimi 1810 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜑 ∨ 𝜓)) | 
| 3 | olc 868 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 4 | 3 | alimi 1810 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 ∨ 𝜓)) | 
| 5 | 2, 4 | jaoi 857 | 1 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∨ wo 847 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-or 848 | 
| This theorem is referenced by: 19.33b 1884 bj-nnfor 36752 bj-nnford 36753 | 
| Copyright terms: Public domain | W3C validator |