| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.43OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of 19.43 1882. Do not delete as it is referenced on the mmrecent.html 1882 page and in conventions-labels 30387. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 19.43OLD | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 985 | . . . . 5 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | albii 1819 | . . . 4 ⊢ (∀𝑥 ¬ (𝜑 ∨ 𝜓) ↔ ∀𝑥(¬ 𝜑 ∧ ¬ 𝜓)) |
| 3 | 19.26 1870 | . . . 4 ⊢ (∀𝑥(¬ 𝜑 ∧ ¬ 𝜓) ↔ (∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ¬ 𝜓)) | |
| 4 | alnex 1781 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 5 | alnex 1781 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 6 | 4, 5 | anbi12i 628 | . . . 4 ⊢ ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ¬ 𝜓) ↔ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) |
| 7 | 2, 3, 6 | 3bitri 297 | . . 3 ⊢ (∀𝑥 ¬ (𝜑 ∨ 𝜓) ↔ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) |
| 8 | 7 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ (𝜑 ∨ 𝜓) ↔ ¬ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) |
| 9 | df-ex 1780 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ ¬ ∀𝑥 ¬ (𝜑 ∨ 𝜓)) | |
| 10 | oran 991 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ ¬ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) | |
| 11 | 8, 9, 10 | 3bitr4i 303 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |