Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.43OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of 19.43 1885. Do not delete as it is referenced on the mmrecent.html 1885 page and in conventions-labels 28765. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
19.43OLD | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 981 | . . . . 5 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | albii 1822 | . . . 4 ⊢ (∀𝑥 ¬ (𝜑 ∨ 𝜓) ↔ ∀𝑥(¬ 𝜑 ∧ ¬ 𝜓)) |
3 | 19.26 1873 | . . . 4 ⊢ (∀𝑥(¬ 𝜑 ∧ ¬ 𝜓) ↔ (∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ¬ 𝜓)) | |
4 | alnex 1784 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
5 | alnex 1784 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
6 | 4, 5 | anbi12i 627 | . . . 4 ⊢ ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ¬ 𝜓) ↔ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) |
7 | 2, 3, 6 | 3bitri 297 | . . 3 ⊢ (∀𝑥 ¬ (𝜑 ∨ 𝜓) ↔ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) |
8 | 7 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ (𝜑 ∨ 𝜓) ↔ ¬ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) |
9 | df-ex 1783 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ ¬ ∀𝑥 ¬ (𝜑 ∨ 𝜓)) | |
10 | oran 987 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ ¬ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) | |
11 | 8, 9, 10 | 3bitr4i 303 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |