Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > olc | Structured version Visualization version GIF version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
olc | ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜑)) | |
2 | 1 | orrd 860 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: pm1.4 866 pm2.46 880 norbi 884 pm2.07 900 pm2.41 905 pm1.5 917 biorf 934 pm4.72 947 jaob 959 pm3.48 961 andi 1005 dedlemb 1044 consensus 1050 anifp 1069 norassOLD 1536 cad1 1619 19.33 1887 19.33b 1888 dfsb2 2497 mooran2 2556 undif4 4400 prel12g 4794 ordssun 6365 tpres 7076 frxp 7967 omopth2 8415 swoord1 8529 swoord2 8530 fpwwe2lem11 10397 ltapr 10801 zmulcl 12369 nn0lt2 12383 elnn1uz2 12665 mnflt 12859 mnfltpnf 12862 fzm1 13336 expeq0 13813 swrdnnn0nd 14369 nn0o1gt2 16090 prm23lt5 16515 vdwlem9 16690 cshwshashlem1 16797 cshwshash 16806 funcres2c 17617 tsrlemax 18304 odlem1 19143 gexlem1 19184 0top 22133 cmpfi 22559 alexsubALTlem3 23200 dyadmbl 24764 plydivex 25457 scvxcvx 26135 gausslemma2dlem0f 26509 nb3grprlem1 27747 1to3vfriswmgr 28644 frgrwopreg 28687 frgrregorufr 28689 frgrregord13 28760 disjunsn 30933 dfon2lem4 33762 frxp2 33791 frxp3 33797 dfrdg4 34253 broutsideof2 34424 lineunray 34449 fwddifnp1 34467 meran1 34600 bj-orim2 34736 bj-peircecurry 34738 bj-falor2 34767 bj-sbsb 35020 bj-unrab 35114 wl-orel12 35670 tsor3 36307 paddclN 37856 lcfl6 39514 sbor2 40177 fsuppind 40279 ifpid3g 41099 ifpim4 41105 rp-fakeanorass 41120 sqrtcval 41249 iunrelexp0 41310 clsk1indlem3 41653 19.33-2 42000 ax6e2ndeq 42179 undif3VD 42502 ax6e2ndeqVD 42529 ax6e2ndeqALT 42551 stoweidlem26 43567 stoweidlem37 43578 fourierswlem 43771 fouriersw 43772 elaa2lem 43774 salexct 43873 sge0z 43913 nfunsnafv2 44717 prproropf1olem4 44958 sfprmdvdsmersenne 45055 nn0o1gt2ALTV 45146 odd2prm2 45170 even3prm2 45171 stgoldbwt 45228 nrhmzr 45431 reorelicc 46056 rrx2plord2 46068 line2y 46101 |
Copyright terms: Public domain | W3C validator |