![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > olc | Structured version Visualization version GIF version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
olc | ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜑)) | |
2 | 1 | orrd 862 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: pm1.4 868 pm2.46 881 norbi 885 pm2.07 901 pm2.41 906 pm1.5 918 biorf 935 pm4.72 950 jaob 962 pm3.48 964 andi 1008 dedlemb 1047 consensus 1053 anifp 1072 cad1 1614 19.33 1883 19.33b 1884 dfsb2 2501 mooran2 2559 undif4 4490 prel12g 4888 ordssun 6497 tpres 7238 fvf1pr 7343 frxp 8167 frxp2 8185 frxp3 8192 omopth2 8640 naddunif 8749 swoord1 8795 swoord2 8796 fpwwe2lem11 10710 ltapr 11114 zmulcl 12692 nn0lt2 12706 elnn1uz2 12990 mnflt 13186 mnfltpnf 13189 fzm1 13664 expeq0 14143 zzlesq 14255 swrdnnn0nd 14704 nn0o1gt2 16429 prm23lt5 16861 vdwlem9 17036 cshwshashlem1 17143 cshwshash 17152 funcres2c 17968 tsrlemax 18656 odlem1 19577 gexlem1 19621 nrhmzr 20563 0top 23011 cmpfi 23437 alexsubALTlem3 24078 dyadmbl 25654 plydivex 26357 scvxcvx 27047 gausslemma2dlem0f 27423 nb3grprlem1 29415 1to3vfriswmgr 30312 frgrwopreg 30355 frgrregorufr 30357 frgrregord13 30428 disjunsn 32616 dfon2lem4 35750 dfrdg4 35915 broutsideof2 36086 lineunray 36111 fwddifnp1 36129 meran1 36377 bj-orim2 36522 bj-peircecurry 36524 bj-falor2 36551 bj-sbsb 36803 bj-unrab 36892 wl-orel12 37465 tsor3 38109 paddclN 39799 lcfl6 41457 sbor2 42205 fsuppind 42545 omcl3g 43296 ifpid3g 43454 ifpim4 43460 rp-fakeanorass 43475 sqrtcval 43603 iunrelexp0 43664 clsk1indlem3 44005 19.33-2 44351 ax6e2ndeq 44530 undif3VD 44853 ax6e2ndeqVD 44880 ax6e2ndeqALT 44902 stoweidlem26 45947 stoweidlem37 45958 fourierswlem 46151 fouriersw 46152 elaa2lem 46154 salexct 46255 sge0z 46296 nfunsnafv2 47140 prproropf1olem4 47380 sfprmdvdsmersenne 47477 nn0o1gt2ALTV 47568 odd2prm2 47592 even3prm2 47593 stgoldbwt 47650 clnbgrel 47701 reorelicc 48444 rrx2plord2 48456 line2y 48489 |
Copyright terms: Public domain | W3C validator |