Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > olc | Structured version Visualization version GIF version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
olc | ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜑)) | |
2 | 1 | orrd 859 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: pm1.4 865 pm2.46 879 norbi 883 pm2.07 899 pm2.41 904 pm1.5 916 biorf 933 pm4.72 946 jaob 958 pm3.48 960 andi 1004 dedlemb 1043 consensus 1049 anifp 1068 norassOLD 1536 cad1 1620 19.33 1888 19.33b 1889 dfsb2 2497 mooran2 2556 undif4 4397 prel12g 4791 ordssun 6350 tpres 7058 frxp 7938 omopth2 8377 swoord1 8487 swoord2 8488 fpwwe2lem11 10328 ltapr 10732 zmulcl 12299 nn0lt2 12313 elnn1uz2 12594 mnflt 12788 mnfltpnf 12791 fzm1 13265 expeq0 13741 swrdnnn0nd 14297 nn0o1gt2 16018 prm23lt5 16443 vdwlem9 16618 cshwshashlem1 16725 cshwshash 16734 funcres2c 17533 tsrlemax 18219 odlem1 19058 gexlem1 19099 0top 22041 cmpfi 22467 alexsubALTlem3 23108 dyadmbl 24669 plydivex 25362 scvxcvx 26040 gausslemma2dlem0f 26414 nb3grprlem1 27650 1to3vfriswmgr 28545 frgrwopreg 28588 frgrregorufr 28590 frgrregord13 28661 disjunsn 30834 dfon2lem4 33668 frxp2 33718 frxp3 33724 dfrdg4 34180 broutsideof2 34351 lineunray 34376 fwddifnp1 34394 meran1 34527 bj-orim2 34663 bj-peircecurry 34665 bj-falor2 34694 bj-sbsb 34947 bj-unrab 35041 wl-orel12 35597 tsor3 36234 paddclN 37783 lcfl6 39441 sbor2 40105 fsuppind 40202 ifpid3g 40997 ifpim4 41003 rp-fakeanorass 41018 sqrtcval 41138 iunrelexp0 41199 clsk1indlem3 41542 19.33-2 41889 ax6e2ndeq 42068 undif3VD 42391 ax6e2ndeqVD 42418 ax6e2ndeqALT 42440 stoweidlem26 43457 stoweidlem37 43468 fourierswlem 43661 fouriersw 43662 elaa2lem 43664 salexct 43763 sge0z 43803 nfunsnafv2 44604 prproropf1olem4 44846 sfprmdvdsmersenne 44943 nn0o1gt2ALTV 45034 odd2prm2 45058 even3prm2 45059 stgoldbwt 45116 nrhmzr 45319 reorelicc 45944 rrx2plord2 45956 line2y 45989 |
Copyright terms: Public domain | W3C validator |