![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > olc | Structured version Visualization version GIF version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
olc | ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜑)) | |
2 | 1 | orrd 850 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-or 835 |
This theorem is referenced by: pm1.4 856 pm2.46 867 norbi 871 pm2.07 887 pm2.41 892 pm1.5 904 biorf 921 pm4.72 933 jaob 945 pm3.48 947 andi 991 dedlemb 1028 consensus 1034 anifp 1052 cad1 1580 19.33 1848 19.33b 1849 dfsb2 2455 dfsb2ALT 2520 mooran2 2573 undif4 4302 prel12g 4673 ordssun 6133 tpres 6796 frxp 7631 omopth2 8017 swoord1 8126 swoord2 8127 fpwwe2lem12 9867 ltapr 10271 zmulcl 11850 nn0lt2 11864 elnn1uz2 12145 mnflt 12341 mnfltpnf 12344 fzm1 12809 expeq0 13280 swrdnnn0nd 13830 nn0o1gt2 15598 prm23lt5 16013 vdwlem9 16187 cshwshashlem1 16291 cshwshash 16300 funcres2c 17041 tsrlemax 17700 odlem1 18437 gexlem1 18477 0top 21310 cmpfi 21735 alexsubALTlem3 22376 dyadmbl 23919 plydivex 24604 scvxcvx 25280 gausslemma2dlem0f 25654 nb3grprlem1 26880 1to3vfriswmgr 27829 frgrwopreg 27872 frgrregorufr 27874 frgrregord13 27968 disjunsn 30127 dfon2lem4 32591 dfrdg4 32973 broutsideof2 33144 lineunray 33169 fwddifnp1 33187 meran1 33319 bj-orim2 33448 bj-peircecurry 33450 bj-falor2 33476 bj-sbsb 33691 bj-unrab 33779 wl-orel12 34232 tsor3 34911 paddclN 36463 lcfl6 38121 sbor2 38587 ifpid3g 39295 ifpim4 39301 rp-fakeanorass 39316 iunrelexp0 39451 clsk1indlem3 39797 19.33-2 40171 ax6e2ndeq 40352 undif3VD 40675 ax6e2ndeqVD 40702 ax6e2ndeqALT 40724 stoweidlem26 41777 stoweidlem37 41788 fourierswlem 41981 fouriersw 41982 elaa2lem 41984 salexct 42083 sge0z 42123 nfunsnafv2 42865 prproropf1olem4 43071 sfprmdvdsmersenne 43171 nn0o1gt2ALTV 43262 odd2prm2 43286 even3prm2 43287 stgoldbwt 43344 nrhmzr 43543 reorelicc 44100 rrx2plord2 44112 line2y 44145 |
Copyright terms: Public domain | W3C validator |