| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnford | Structured version Visualization version GIF version | ||
| Description: Nonfreeness in both disjuncts implies nonfreeness in the disjunction, deduction form. See comments for bj-nnfor 36773 and bj-nnfand 36772. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nnford.1 | ⊢ (𝜑 → Ⅎ'𝑥𝜓) |
| bj-nnford.2 | ⊢ (𝜑 → Ⅎ'𝑥𝜒) |
| Ref | Expression |
|---|---|
| bj-nnford | ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.43 1882 | . . 3 ⊢ (∃𝑥(𝜓 ∨ 𝜒) ↔ (∃𝑥𝜓 ∨ ∃𝑥𝜒)) | |
| 2 | bj-nnford.1 | . . . . 5 ⊢ (𝜑 → Ⅎ'𝑥𝜓) | |
| 3 | 2 | bj-nnfed 36755 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜓)) |
| 4 | bj-nnford.2 | . . . . 5 ⊢ (𝜑 → Ⅎ'𝑥𝜒) | |
| 5 | 4 | bj-nnfed 36755 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜒 → 𝜒)) |
| 6 | 3, 5 | orim12d 966 | . . 3 ⊢ (𝜑 → ((∃𝑥𝜓 ∨ ∃𝑥𝜒) → (𝜓 ∨ 𝜒))) |
| 7 | 1, 6 | biimtrid 242 | . 2 ⊢ (𝜑 → (∃𝑥(𝜓 ∨ 𝜒) → (𝜓 ∨ 𝜒))) |
| 8 | 2 | bj-nnfad 36752 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| 9 | 4 | bj-nnfad 36752 | . . . 4 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| 10 | 8, 9 | orim12d 966 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜒) → (∀𝑥𝜓 ∨ ∀𝑥𝜒))) |
| 11 | 19.33 1884 | . . 3 ⊢ ((∀𝑥𝜓 ∨ ∀𝑥𝜒) → ∀𝑥(𝜓 ∨ 𝜒)) | |
| 12 | 10, 11 | syl6 35 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜒) → ∀𝑥(𝜓 ∨ 𝜒))) |
| 13 | df-bj-nnf 36747 | . 2 ⊢ (Ⅎ'𝑥(𝜓 ∨ 𝜒) ↔ ((∃𝑥(𝜓 ∨ 𝜒) → (𝜓 ∨ 𝜒)) ∧ ((𝜓 ∨ 𝜒) → ∀𝑥(𝜓 ∨ 𝜒)))) | |
| 14 | 7, 12, 13 | sylanbrc 583 | 1 ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∀wal 1538 ∃wex 1779 Ⅎ'wnnf 36746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-bj-nnf 36747 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |