Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.9ht | Structured version Visualization version GIF version |
Description: A closed version of 19.9h 2290. (Contributed by NM, 13-May-1993.) (Proof shortened by Wolf Lammen, 3-Mar-2018.) |
Ref | Expression |
---|---|
19.9ht | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5-1 2146 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
2 | 1 | 19.9d 2201 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-ex 1782 df-nf 1786 |
This theorem is referenced by: bj-19.9htbi 34431 |
Copyright terms: Public domain | W3C validator |