Home | Metamath
Proof Explorer Theorem List (p. 24 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sbim 2301 | Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.) |
⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | sbrim 2302 | Substitution in an implication with a variable not free in the antecedent affects only the consequent. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) Avoid ax-10 2138. (Revised by Gino Giotto, 20-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | sbrimOLD 2303 | Obsolete version of sbrim 2302 as of 20-Nov-2024. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | sblim 2304 | Substitution in an implication with a variable not free in the consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) | ||
Theorem | sbor 2305 | Disjunction inside and outside of a substitution are equivalent. (Contributed by NM, 29-Sep-2002.) |
⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | ||
Theorem | sbbi 2306 | Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.) |
⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) | ||
Theorem | sblbis 2307 | Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝑦 / 𝑥](𝜒 ↔ 𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ 𝜓)) | ||
Theorem | sbrbis 2308 | Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒)) | ||
Theorem | sbrbif 2309 | Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑥𝜒 & ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) | ||
Theorem | sbiev 2310* | Conversion of implicit substitution to explicit substitution. Version of sbie 2507 with a disjoint variable condition, not requiring ax-13 2373. See sbievw 2096 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2138 and shorten proof. (Revised by BJ, 18-Jul-2023.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | sbiedw 2311* | Conversion of implicit substitution to explicit substitution (deduction version of sbiev 2310). Version of sbied 2508 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | axc7 2312 |
Show that the original axiom ax-c7 36906 can be derived from ax-10 2138
(hbn1 2139) , sp 2177 and propositional calculus. See ax10fromc7 36916 for the
rederivation of ax-10 2138 from ax-c7 36906.
Normally, axc7 2312 should be used rather than ax-c7 36906, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.) |
⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | ||
Theorem | axc7e 2313 | Abbreviated version of axc7 2312 using the existential quantifier. Corresponds to the dual of Axiom (B) of modal logic. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 8-Jul-2022.) |
⊢ (∃𝑥∀𝑥𝜑 → 𝜑) | ||
Theorem | modal-b 2314 | The analogue in our predicate calculus of the Brouwer axiom (B) of modal logic S5. (Contributed by NM, 5-Oct-2005.) |
⊢ (𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑) | ||
Theorem | 19.9ht 2315 | A closed version of 19.9h 2284. (Contributed by NM, 13-May-1993.) (Proof shortened by Wolf Lammen, 3-Mar-2018.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → 𝜑)) | ||
Theorem | axc4 2316 |
Show that the original axiom ax-c4 36905 can be derived from ax-4 1812
(alim 1813), ax-10 2138 (hbn1 2139), sp 2177 and propositional calculus. See
ax4fromc4 36915 for the rederivation of ax-4 1812
from ax-c4 36905.
Part of the proof is based on the proof of Lemma 22 of [Monk2] p. 114. (Contributed by NM, 21-May-2008.) (Proof modification is discouraged.) |
⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | ||
Theorem | axc4i 2317 | Inference version of axc4 2316. (Contributed by NM, 3-Jan-1993.) |
⊢ (∀𝑥𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) | ||
Theorem | nfal 2318 | If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦𝜑 | ||
Theorem | nfex 2319 | If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2319, hbex 2320. (Revised by Wolf Lammen, 16-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃𝑦𝜑 | ||
Theorem | hbex 2320 | If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by NM, 12-Mar-1993.) Reduce symbol count in nfex 2319, hbex 2320. (Revised by Wolf Lammen, 16-Oct-2021.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) | ||
Theorem | nfnf 2321 | If 𝑥 is not free in 𝜑, then it is not free in Ⅎ𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥Ⅎ𝑦𝜑 | ||
Theorem | 19.12 2322 | Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! But sometimes the converse does hold, as in 19.12vv 2346 and r19.12sn 4657. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) |
⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) | ||
Theorem | nfald 2323 | Deduction form of nfal 2318. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) | ||
Theorem | nfexd 2324 | If 𝑥 is not free in 𝜓, then it is not free in ∃𝑦𝜓. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) | ||
Theorem | nfsbv 2325* | If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is disjoint from both 𝑥 and 𝑦. Version of nfsb 2528 with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2373. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) (Proof shortened by Wolf Lammen, 25-Oct-2024.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | ||
Theorem | nfsbvOLD 2326* | Obsolete version of nfsbv 2325 as of 25-Oct-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | ||
Theorem | hbsbwOLD 2327* | Obsolete version of hbsbw 2170 as of 23-May-2024. (Contributed by NM, 12-Aug-1993.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑧𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) | ||
Theorem | sbco2v 2328* | A composition law for substitution. Version of sbco2 2516 with disjoint variable conditions but not requiring ax-13 2373. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 29-Apr-2023.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
Theorem | aaan 2329 | Distribute universal quantifiers. (Contributed by NM, 12-Aug-1993.) Avoid ax-10 2138. (Revised by Gino Giotto, 21-Nov-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) | ||
Theorem | aaanOLD 2330 | Obsolete version of aaan 2329 as of 21-Nov-2024. (Contributed by NM, 12-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) | ||
Theorem | eeor 2331 | Distribute existential quantifiers. (Contributed by NM, 8-Aug-1994.) Avoid ax-10 2138. (Revised by Gino Giotto, 21-Nov-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) | ||
Theorem | eeorOLD 2332 | Obsolete version of eeor 2331 as of 21-Nov-2024. (Contributed by NM, 8-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) | ||
Theorem | cbv3v 2333* | Rule used to change bound variables, using implicit substitution. Version of cbv3 2398 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | cbv1v 2334* | Rule used to change bound variables, using implicit substitution. Version of cbv1 2403 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 16-Jun-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
Theorem | cbv2w 2335* | Rule used to change bound variables, using implicit substitution. Version of cbv2 2404 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 5-Aug-1993.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbvaldw 2336* | Deduction used to change bound variables, using implicit substitution. Version of cbvald 2408 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 2-Jan-2002.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbvexdw 2337* | Deduction used to change bound variables, using implicit substitution. Version of cbvexd 2409 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 2-Jan-2002.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
Theorem | cbv3hv 2338* | Rule used to change bound variables, using implicit substitution. Version of cbv3h 2405 with a disjoint variable condition on 𝑥, 𝑦, which does not require ax-13 2373. Was used in a proof of axc11n 2427 (but of independent interest). (Contributed by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 29-Nov-2020.) (Proof shortened by BJ, 30-Nov-2020.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | cbvalv1 2339* | Rule used to change bound variables, using implicit substitution. Version of cbval 2399 with a disjoint variable condition, which does not require ax-13 2373. See cbvalvw 2040 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2401 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | cbvexv1 2340* | Rule used to change bound variables, using implicit substitution. Version of cbvex 2400 with a disjoint variable condition, which does not require ax-13 2373. See cbvexvw 2041 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2402 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | cbval2v 2341* | Rule used to change bound variables, using implicit substitution. Version of cbval2 2412 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 22-Dec-2003.) (Revised by BJ, 16-Jun-2019.) (Proof shortened by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | ||
Theorem | cbval2vOLD 2342* | Obsolete version of cbval2v 2341 as of 14-Jan-2024. (Contributed by BJ, 16-Jan-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | ||
Theorem | cbvex2v 2343* | Rule used to change bound variables, using implicit substitution. Version of cbvex2 2413 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 14-Sep-2003.) (Revised by BJ, 16-Jun-2019.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | ||
Theorem | dvelimhw 2344* | Proof of dvelimh 2451 without using ax-13 2373 but with additional distinct variable conditions. (Contributed by NM, 1-Oct-2002.) (Revised by Andrew Salmon, 21-Jul-2011.) (Revised by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 23-Dec-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑧𝜓) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | pm11.53 2345* | Theorem *11.53 in [WhiteheadRussell] p. 164. See pm11.53v 1948 for a version requiring fewer axioms. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)) | ||
Theorem | 19.12vv 2346* | Special case of 19.12 2322 where its converse holds. See 19.12vvv 1993 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 18-Jul-2001.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) | ||
Theorem | eean 2347 | Distribute existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | ||
Theorem | eeanv 2348* | Distribute a pair of existential quantifiers over a conjunction. Combination of 19.41v 1954 and 19.42v 1958. For a version requiring fewer axioms but with additional disjoint variable conditions, see exdistrv 1960. (Contributed by NM, 26-Jul-1995.) |
⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | ||
Theorem | eeeanv 2349* | Distribute three existential quantifiers over a conjunction. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) Reduce distinct variable restrictions. (Revised by Wolf Lammen, 20-Jan-2018.) |
⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) | ||
Theorem | ee4anv 2350* | Distribute two pairs of existential quantifiers over a conjunction. For a version requiring fewer axioms but with additional disjoint variable conditions, see 4exdistrv 1961. (Contributed by NM, 31-Jul-1995.) |
⊢ (∃𝑥∃𝑦∃𝑧∃𝑤(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤𝜓)) | ||
Theorem | sb8v 2351* | Substitution of variable in universal quantifier. Version of sb8f 2352 with a disjoint variable condition replacing the nonfree hypothesis Ⅎ𝑦𝜑, not requiring ax-12 2172. (Contributed by SN, 5-Dec-2024.) |
⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | sb8f 2352* | Substitution of variable in universal quantifier. Version of sb8 2522 with a disjoint variable condition, not requiring ax-10 2138 or ax-13 2373. (Contributed by NM, 16-May-1993.) (Revised by Wolf Lammen, 19-Jan-2023.) Avoid ax-10 2138. (Revised by SN, 5-Dec-2024.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | sb8fOLD 2353* | Obsolete version of sb8f 2352 as of 5-Dec-2024. (Contributed by NM, 16-May-1993.) (Revised by Wolf Lammen, 19-Jan-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | sb8ef 2354* | Substitution of variable in existential quantifier. Version of sb8e 2523 with a disjoint variable condition, not requiring ax-13 2373. (Contributed by NM, 12-Aug-1993.) (Revised by Wolf Lammen, 19-Jan-2023.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | 2sb8ef 2355* | An equivalent expression for double existence. Version of 2sb8e 2536 with more disjoint variable conditions, not requiring ax-13 2373. (Contributed by Wolf Lammen, 28-Jan-2023.) |
⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑) | ||
Theorem | sb6rfv 2356* | Reversed substitution. Version of sb6rf 2469 requiring disjoint variables, but fewer axioms. (Contributed by NM, 1-Aug-1993.) (Revised by Wolf Lammen, 7-Feb-2023.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)) | ||
Theorem | sbnf2 2357* | Two ways of expressing "𝑥 is (effectively) not free in 𝜑". (Contributed by Gérard Lang, 14-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Sep-2018.) Avoid ax-13 2373. (Revised by Wolf Lammen, 30-Jan-2023.) |
⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | ||
Theorem | exsb 2358* | An equivalent expression for existence. One direction (exsbim 2006) needs fewer axioms. (Contributed by NM, 2-Feb-2005.) Avoid ax-13 2373. (Revised by Wolf Lammen, 16-Oct-2022.) |
⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | 2exsb 2359* | An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 30-Sep-2018.) |
⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | ||
Theorem | sbbib 2360* | Reversal of substitution. (Contributed by AV, 6-Aug-2023.) (Proof shortened by Wolf Lammen, 4-Sep-2023.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓)) | ||
Theorem | sbbibvv 2361* | Reversal of substitution. (Contributed by AV, 6-Aug-2023.) |
⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓)) | ||
Theorem | sbievg 2362* | Substitution applied to expressions linked by implicit substitution. The proof was part of a former cbvabw 2813 version. (Contributed by GG and WL, 26-Oct-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) | ||
Theorem | cleljustALT 2363* | Alternate proof of cleljust 2116. It is kept here and should not be modified because it is referenced on the Metamath Proof Explorer Home Page (mmset.html) as an example of how disjoint variable conditions are inherited by substitutions. (Contributed by NM, 28-Jan-2004.) (Revised by BJ, 29-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦)) | ||
Theorem | cleljustALT2 2364* | Alternate proof of cleljust 2116. Compared with cleljustALT 2363, it uses nfv 1918 followed by equsexv 2261 instead of ax-5 1914 followed by equsexhv 2290, so it uses the idiom Ⅎ𝑥𝜑 instead of 𝜑 → ∀𝑥𝜑 to express nonfreeness. This style is generally preferred for later theorems. (Contributed by NM, 28-Jan-2004.) (Revised by Mario Carneiro, 21-Dec-2016.) (Revised by BJ, 29-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦)) | ||
Theorem | equs5aALT 2365 | Alternate proof of equs5a 2458. Uses ax-12 2172 but not ax-13 2373. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | equs5eALT 2366 | Alternate proof of equs5e 2459. Uses ax-12 2172 but not ax-13 2373. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 15-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | ||
Theorem | axc11r 2367 |
Same as axc11 2431 but with reversed antecedent. Note the use
of ax-12 2172
(and not merely ax12v 2173 as in axc11rv 2258).
This theorem is mostly used to eliminate conditions requiring set variables be distinct (cf. cbvaev 2057 and aecom 2428, for example) in proofs. In practice, theorems beyond elementary set theory do not really benefit from such eliminations. As of 2024, it is used in conjunction with ax-13 2373 only, and like that, it should be applied only in niches where indispensable. (Contributed by NM, 25-Jul-2015.) |
⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Theorem | dral1v 2368* | Formula-building lemma for use with the Distinctor Reduction Theorem. Version of dral1 2440 with a disjoint variable condition, which does not require ax-13 2373. Remark: the corresponding versions for dral2 2439 and drex2 2443 are instances of albidv 1924 and exbidv 1925 respectively. (Contributed by NM, 24-Nov-1994.) (Revised by BJ, 17-Jun-2019.) Base the proof on ax12v 2173. (Revised by Wolf Lammen, 30-Mar-2024.) Avoid ax-10 2138. (Revised by Gino Giotto, 18-Nov-2024.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | dral1vOLD 2369* | Obsolete version of dral1v 2368 as of 18-Nov-2024. (Contributed by NM, 24-Nov-1994.) (Revised by BJ, 17-Jun-2019.) Base the proof on ax12v 2173. (Revised by Wolf Lammen, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | drex1v 2370* | Formula-building lemma for use with the Distinctor Reduction Theorem. Version of drex1 2442 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 27-Feb-2005.) (Revised by BJ, 17-Jun-2019.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) | ||
Theorem | drnf1v 2371* | Formula-building lemma for use with the Distinctor Reduction Theorem. Version of drnf1 2444 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by Mario Carneiro, 4-Oct-2016.) (Revised by BJ, 17-Jun-2019.) Avoid ax-10 2138. (Revised by Gino Giotto, 18-Nov-2024.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) | ||
Theorem | drnf1vOLD 2372* | Obsolete version of drnf1v 2371 as of 18-Nov-2024. (Contributed by Mario Carneiro, 4-Oct-2016.) (Revised by BJ, 17-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) | ||
Axiom | ax-13 2373 |
Axiom of Quantified Equality. One of the equality and substitution axioms
of predicate calculus with equality.
An equivalent way to express this axiom that may be easier to understand is (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥𝑦 = 𝑧))) (see ax13b 2036). Recall that in the intended interpretation, our variables are metavariables ranging over the variables of predicate calculus (the object language). In order for the first antecedent ¬ 𝑥 = 𝑦 to hold, 𝑥 and 𝑦 must have different values and thus cannot be the same object-language variable (so they are effectively "distinct variables" even though no $d is present). Similarly, 𝑥 and 𝑧 cannot be the same object-language variable. Therefore, 𝑥 will not occur in the wff 𝑦 = 𝑧 when the first two antecedents hold, so analogous to ax-5 1914, the conclusion (𝑦 = 𝑧 → ∀𝑥𝑦 = 𝑧) follows. Note that ax-5 1914 cannot prove this because its distinct variable ($d) requirement is not satisfied directly but only indirectly (outside of Metamath) by the argument above. The original version of this axiom was ax-c9 36911 and was replaced with this shorter ax-13 2373 in December 2015. The old axiom is proved from this one as Theorem axc9 2383. The primary purpose of this axiom is to provide a way to introduce the quantifier ∀𝑥 on 𝑦 = 𝑧 even when 𝑥 and 𝑦 are substituted with the same variable. In this case, the first antecedent becomes ¬ 𝑥 = 𝑥 and the axiom still holds. This axiom is mostly used to eliminate conditions requiring set variables be distinct (cf. ax6ev 1974 and ax6e 2384, for example) in proofs. In practice, theorems beyond elementary set theory do not really benefit from such eliminations, so direct or indirect application of this axiom is discouraged now. You need to explicitly confirm its use in case you see a sensible application in a niche. After some assisting contributions by others over the years, it was in particular the extensive work of Gino Giotto in 2024 that helped reducing dependencies on this axiom on a large scale. Although this version is shorter, the original version axc9 2383 may be more practical to work with because of the "distinctor" form of its antecedents. A typical application of axc9 2383 is in dvelimh 2451 which converts a distinct variable pair to the distinctor antecedent ¬ ∀𝑥𝑥 = 𝑦. In particular, it is conjectured that it is not possible to prove ax6 2385 from ax6v 1973 without this axiom. This axiom can be weakened if desired by adding distinct variable restrictions on pairs 𝑥, 𝑧 and 𝑦, 𝑧. To show that, we add these restrictions to Theorem ax13v 2374 and use only ax13v 2374 for further derivations. Thus, ax13v 2374 should be the only theorem referencing this axiom. Other theorems can reference either ax13v 2374 (preferred) or ax13 2376 (if the stronger form is needed). This axiom scheme is logically redundant (see ax13w 2133) but is used as an auxiliary axiom scheme to achieve scheme completeness (i.e. so that all possible cases of bundling can be proved; see text linked at mmtheorems.html#ax6dgen 2133). It is not known whether this axiom can be derived from the others. (Contributed by NM, 21-Dec-2015.) (New usage is discouraged.) |
⊢ (¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
Theorem | ax13v 2374* |
A weaker version of ax-13 2373 with distinct variable restrictions on pairs
𝑥,
𝑧 and 𝑦, 𝑧. In order to show (with
ax13 2376) that this
weakening is still adequate, this should be the only theorem referencing
ax-13 2373 directly.
Had we additionally required 𝑥 and 𝑦 be distinct, too, this theorem would have been a direct consequence of ax-5 1914. So essentially this theorem states, that a distinct variable condition can be replaced with an inequality between set variables. Preferably, use the version ax13w 2133 to avoid the propagation of ax-13 2373. (Contributed by NM, 30-Jun-2016.) (New usage is discouraged.) |
⊢ (¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
Theorem | ax13lem1 2375* | A version of ax13v 2374 with one distinct variable restriction dropped. For convenience, 𝑦 is kept on the right side of equations. The proof of ax13 2376 bases on ideas from NM, 24-Dec-2015. (Contributed by Wolf Lammen, 8-Sep-2018.) (New usage is discouraged.) |
⊢ (¬ 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | ||
Theorem | ax13 2376 | Derive ax-13 2373 from ax13v 2374 and Tarski's FOL. This shows that the weakening in ax13v 2374 is still sufficient for a complete system. Preferably, use the weaker ax13w 2133 to avoid the propagation of ax-13 2373. (Contributed by NM, 21-Dec-2015.) (Proof shortened by Wolf Lammen, 31-Jan-2018.) Reduce axiom usage. (Revised by Wolf Lammen, 2-Jun-2021.) (New usage is discouraged.) |
⊢ (¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
Theorem | ax13lem2 2377* | Lemma for nfeqf2 2378. This lemma is equivalent to ax13v 2374 with one distinct variable constraint removed. (Contributed by Wolf Lammen, 8-Sep-2018.) Reduce axiom usage. (Revised by Wolf Lammen, 18-Oct-2020.) (New usage is discouraged.) |
⊢ (¬ 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → 𝑧 = 𝑦)) | ||
Theorem | nfeqf2 2378* | An equation between setvar is free of any other setvar. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by Wolf Lammen, 9-Jun-2019.) Remove dependency on ax-12 2172. (Revised by Wolf Lammen, 16-Dec-2022.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) | ||
Theorem | dveeq2 2379* | Quantifier introduction when one pair of variables is distinct. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by NM, 2-Jan-2002.) (Revised by NM, 20-Jul-2015.) Remove dependency on ax-11 2155. (Revised by Wolf Lammen, 8-Sep-2018.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | ||
Theorem | nfeqf1 2380* | An equation between setvar is free of any other setvar. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by Wolf Lammen, 10-Jun-2019.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) | ||
Theorem | dveeq1 2381* | Quantifier introduction when one pair of variables is distinct. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by NM, 2-Jan-2002.) Remove dependency on ax-11 2155. (Revised by Wolf Lammen, 8-Sep-2018.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
Theorem | nfeqf 2382 | A variable is effectively not free in an equality if it is not either of the involved variables. Ⅎ version of ax-c9 36911. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by Mario Carneiro, 6-Oct-2016.) Remove dependency on ax-11 2155. (Revised by Wolf Lammen, 6-Sep-2018.) (New usage is discouraged.) |
⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑥 = 𝑦) | ||
Theorem | axc9 2383 | Derive set.mm's original ax-c9 36911 from the shorter ax-13 2373. Usage is discouraged to avoid uninformed ax-13 2373 propagation. (Contributed by NM, 29-Nov-2015.) (Revised by NM, 24-Dec-2015.) (Proof shortened by Wolf Lammen, 29-Apr-2018.) (New usage is discouraged.) |
⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
Theorem | ax6e 2384 |
At least one individual exists. This is not a theorem of free logic,
which is sound in empty domains. For such a logic, we would add this
theorem as an axiom of set theory (Axiom 0 of [Kunen] p. 10). In the
system consisting of ax-4 1812 through ax-9 2117,
all axioms other than
ax-6 1972 are believed to be theorems of free logic,
although the system
without ax-6 1972 is not complete in free logic.
Usage of this theorem is discouraged because it depends on ax-13 2373. It is preferred to use ax6ev 1974 when it is sufficient. (Contributed by NM, 14-May-1993.) Shortened after ax13lem1 2375 became available. (Revised by Wolf Lammen, 8-Sep-2018.) (New usage is discouraged.) |
⊢ ∃𝑥 𝑥 = 𝑦 | ||
Theorem | ax6 2385 |
Theorem showing that ax-6 1972 follows from the weaker version ax6v 1973.
(Even though this theorem depends on ax-6 1972,
all references of ax-6 1972 are
made via ax6v 1973. An earlier version stated ax6v 1973
as a separate axiom,
but having two axioms caused some confusion.)
This theorem should be referenced in place of ax-6 1972 so that all proofs can be traced back to ax6v 1973. When possible, use the weaker ax6v 1973 rather than ax6 2385 since the ax6v 1973 derivation is much shorter and requires fewer axioms. (Contributed by NM, 12-Nov-2013.) (Revised by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 4-Feb-2018.) Usage of this theorem is discouraged because it depends on ax-13 2373. Use ax6v 1973 instead. (New usage is discouraged.) |
⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | ||
Theorem | axc10 2386 |
Show that the original axiom ax-c10 36907 can be derived from ax6 2385
and axc7 2312
(on top of propositional calculus, ax-gen 1798, and ax-4 1812). See
ax6fromc10 36917 for the rederivation of ax6 2385
from ax-c10 36907.
Normally, axc10 2386 should be used rather than ax-c10 36907, except by theorems specifically studying the latter's properties. See bj-axc10v 34984 for a weaker version requiring fewer axioms. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) Usage of this theorem is discouraged because it depends on ax-13 2373. (New usage is discouraged.) |
⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | ||
Theorem | spimt 2387 | Closed theorem form of spim 2388. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 21-Mar-2023.) Usage of this theorem is discouraged because it depends on ax-13 2373. (New usage is discouraged.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | spim 2388 | Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 2388 series of theorems requires that only one direction of the substitution hypothesis hold. Usage of this theorem is discouraged because it depends on ax-13 2373. See spimw 1975 for a version requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 18-Feb-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spimed 2389 | Deduction version of spime 2390. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.) Usage of this theorem is discouraged because it depends on ax-13 2373. Use spimedv 2191 instead. (New usage is discouraged.) |
⊢ (𝜒 → Ⅎ𝑥𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜒 → (𝜑 → ∃𝑥𝜓)) | ||
Theorem | spime 2390 | Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. See spimew 1976 and spimevw 1999 for weaker versions requiring fewer axioms. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) Usage of this theorem is discouraged because it depends on ax-13 2373. Use spimefv 2192 instead. (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | spimv 2391* | A version of spim 2388 with a distinct variable requirement instead of a bound-variable hypothesis. See spimfv 2233 and spimvw 2000 for versions requiring fewer axioms. (Contributed by NM, 31-Jul-1993.) Usage of this theorem is discouraged because it depends on ax-13 2373. Use spimvw 2000 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spimvALT 2392* | Alternate proof of spimv 2391. Note that it requires only ax-1 6 through ax-5 1914 together with ax6e 2384. Currently, proofs derive from ax6v 1973, but if ax-6 1972 could be used instead, this proof would reduce axiom usage. (Contributed by NM, 31-Jul-1993.) Remove dependency on ax-10 2138. (Revised by BJ, 29-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spimev 2393* | Distinct-variable version of spime 2390. (Contributed by NM, 10-Jan-1993.) Usage of this theorem is discouraged because it depends on ax-13 2373. Use spimevw 1999 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | spv 2394* | Specialization, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker spvv 2001 if possible. (Contributed by NM, 30-Aug-1993.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spei 2395 | Inference from existential specialization, using implicit substitution. Remove a distinct variable constraint. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker speiv 1977 if possible. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ ∃𝑥𝜑 | ||
Theorem | chvar 2396 | Implicit substitution of 𝑦 for 𝑥 into a theorem. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker chvarfv 2234 if possible. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | chvarv 2397* | Implicit substitution of 𝑦 for 𝑥 into a theorem. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker chvarvv 2003 if possible. (Contributed by NM, 20-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Apr-2018.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | cbv3 2398 | Rule used to change bound variables, using implicit substitution, that does not use ax-c9 36911. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker cbv3v 2333 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | cbval 2399 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. Check out cbvalw 2039, cbvalvw 2040, cbvalv1 2339 for versions requiring fewer axioms. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | cbvex 2400 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. Check out cbvexvw 2041, cbvexv1 2340 for weaker versions requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |