| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5-1 | Structured version Visualization version GIF version | ||
| Description: One direction of nf5 2283 can be proved with a smaller footprint on axiom usage. (Contributed by Wolf Lammen, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| nf5-1 | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1834 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∃𝑥∀𝑥𝜑)) | |
| 2 | hbe1a 2145 | . . 3 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 4 | 3 | nfd 1790 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nf5i 2147 nf5dh 2148 nf5d 2285 hbnt 2295 19.9ht 2321 |
| Copyright terms: Public domain | W3C validator |