|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nf5-1 | Structured version Visualization version GIF version | ||
| Description: One direction of nf5 2282 can be proved with a smaller footprint on axiom usage. (Contributed by Wolf Lammen, 16-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| nf5-1 | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exim 1834 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∃𝑥∀𝑥𝜑)) | |
| 2 | hbe1a 2144 | . . 3 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∀𝑥𝜑)) | 
| 4 | 3 | nfd 1790 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2141 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: nf5i 2146 nf5dh 2147 nf5d 2284 hbnt 2294 19.9ht 2320 | 
| Copyright terms: Public domain | W3C validator |