MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9d Structured version   Visualization version   GIF version

Theorem 19.9d 2196
Description: A deduction version of one direction of 19.9 2198. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.) df-nf 1787 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by Wolf Lammen, 8-Jul-2022.)
Hypothesis
Ref Expression
19.9d.1 (𝜓 → Ⅎ𝑥𝜑)
Assertion
Ref Expression
19.9d (𝜓 → (∃𝑥𝜑𝜑))

Proof of Theorem 19.9d
StepHypRef Expression
1 19.9d.1 . . 3 (𝜓 → Ⅎ𝑥𝜑)
21nfrd 1794 . 2 (𝜓 → (∃𝑥𝜑 → ∀𝑥𝜑))
3 sp 2176 . 2 (∀𝑥𝜑𝜑)
42, 3syl6 35 1 (𝜓 → (∃𝑥𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  19.9t  2197  19.9ht  2314  spimt  2386  exdistrf  2447  equvel  2456  copsexgw  5404  copsexg  5405  oprabidw  7306  19.9d2rf  30820  copsex2d  35310  wl-exeq  35693  spd  46384
  Copyright terms: Public domain W3C validator