|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.9d | Structured version Visualization version GIF version | ||
| Description: A deduction version of one direction of 19.9 2204. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.) df-nf 1783 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by Wolf Lammen, 8-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| 19.9d.1 | ⊢ (𝜓 → Ⅎ𝑥𝜑) | 
| Ref | Expression | 
|---|---|
| 19.9d | ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.9d.1 | . . 3 ⊢ (𝜓 → Ⅎ𝑥𝜑) | |
| 2 | 1 | nfrd 1790 | . 2 ⊢ (𝜓 → (∃𝑥𝜑 → ∀𝑥𝜑)) | 
| 3 | sp 2182 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 | 
| This theorem is referenced by: 19.9t 2203 19.9ht 2319 spimt 2390 exdistrf 2451 equvel 2460 copsexgw 5494 copsexg 5495 oprabidw 7463 19.9d2rf 32489 copsex2d 37141 wl-exeq 37536 spd 49252 | 
| Copyright terms: Public domain | W3C validator |