| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.9d | Structured version Visualization version GIF version | ||
| Description: A deduction version of one direction of 19.9 2206. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.) df-nf 1784 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by Wolf Lammen, 8-Jul-2022.) |
| Ref | Expression |
|---|---|
| 19.9d.1 | ⊢ (𝜓 → Ⅎ𝑥𝜑) |
| Ref | Expression |
|---|---|
| 19.9d | ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.9d.1 | . . 3 ⊢ (𝜓 → Ⅎ𝑥𝜑) | |
| 2 | 1 | nfrd 1791 | . 2 ⊢ (𝜓 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 3 | sp 2184 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: 19.9t 2205 19.9ht 2321 spimt 2391 exdistrf 2452 equvel 2461 copsexgw 5470 copsexg 5471 oprabidw 7441 19.9d2rf 32455 copsex2d 37162 wl-exeq 37557 spd 49509 |
| Copyright terms: Public domain | W3C validator |