|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2sbbid | Structured version Visualization version GIF version | ||
| Description: Deduction doubly substituting both sides of a biconditional. (Contributed by AV, 30-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| sbbid.1 | ⊢ Ⅎ𝑥𝜑 | 
| sbbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| 2sbbid.1 | ⊢ Ⅎ𝑦𝜑 | 
| Ref | Expression | 
|---|---|
| 2sbbid | ⊢ (𝜑 → ([𝑡 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 2sbbid.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | sbbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | sbbid 2245 | . 2 ⊢ (𝜑 → ([𝑢 / 𝑦]𝜓 ↔ [𝑢 / 𝑦]𝜒)) | 
| 5 | 1, 4 | sbbid 2245 | 1 ⊢ (𝜑 → ([𝑡 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1782 [wsb 2063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 df-sb 2064 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |