| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sbbid | Structured version Visualization version GIF version | ||
| Description: Deduction doubly substituting both sides of a biconditional. (Contributed by AV, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbbid.1 | ⊢ Ⅎ𝑥𝜑 |
| sbbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 2sbbid.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| 2sbbid | ⊢ (𝜑 → ([𝑡 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 2sbbid.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | sbbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | sbbid 2249 | . 2 ⊢ (𝜑 → ([𝑢 / 𝑦]𝜓 ↔ [𝑢 / 𝑦]𝜒)) |
| 5 | 1, 4 | sbbid 2249 | 1 ⊢ (𝜑 → ([𝑡 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1784 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |