Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sbbid | Structured version Visualization version GIF version |
Description: Deduction doubly substituting both sides of a biconditional. (Contributed by AV, 30-Jul-2023.) |
Ref | Expression |
---|---|
sbbid.1 | ⊢ Ⅎ𝑥𝜑 |
sbbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
2sbbid.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
2sbbid | ⊢ (𝜑 → ([𝑡 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 2sbbid.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | sbbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | sbbid 2238 | . 2 ⊢ (𝜑 → ([𝑢 / 𝑦]𝜓 ↔ [𝑢 / 𝑦]𝜒)) |
5 | 1, 4 | sbbid 2238 | 1 ⊢ (𝜑 → ([𝑡 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1786 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |