MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sbbid Structured version   Visualization version   GIF version

Theorem 2sbbid 2248
Description: Deduction doubly substituting both sides of a biconditional. (Contributed by AV, 30-Jul-2023.)
Hypotheses
Ref Expression
sbbid.1 𝑥𝜑
sbbid.2 (𝜑 → (𝜓𝜒))
2sbbid.1 𝑦𝜑
Assertion
Ref Expression
2sbbid (𝜑 → ([𝑡 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜒))

Proof of Theorem 2sbbid
StepHypRef Expression
1 sbbid.1 . 2 𝑥𝜑
2 2sbbid.1 . . 3 𝑦𝜑
3 sbbid.2 . . 3 (𝜑 → (𝜓𝜒))
42, 3sbbid 2247 . 2 (𝜑 → ([𝑢 / 𝑦]𝜓 ↔ [𝑢 / 𝑦]𝜒))
51, 4sbbid 2247 1 (𝜑 → ([𝑡 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1781  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator