| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ1 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.) |
| Ref | Expression |
|---|---|
| sbequ1 | ⊢ (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equeucl 2025 | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝑦 = 𝑡 → 𝑥 = 𝑦)) | |
| 2 | ax12v 2181 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 3 | 1, 2 | syl6 35 | . . . 4 ⊢ (𝑥 = 𝑡 → (𝑦 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 4 | 3 | com23 86 | . . 3 ⊢ (𝑥 = 𝑡 → (𝜑 → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 5 | 4 | alrimdv 1930 | . 2 ⊢ (𝑥 = 𝑡 → (𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 6 | df-sb 2068 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 7 | 5, 6 | imbitrrdi 252 | 1 ⊢ (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: sbequ12 2254 dfsb1 2481 dfsb2 2493 2eu6 2652 bj-ssbid1 36697 sb5ALT 44557 2pm13.193 44584 2pm13.193VD 44934 sb5ALTVD 44944 |
| Copyright terms: Public domain | W3C validator |