|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbequ1 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) | 
| Ref | Expression | 
|---|---|
| sbequ1 | ⊢ (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equeucl 2023 | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝑦 = 𝑡 → 𝑥 = 𝑦)) | |
| 2 | ax12v 2178 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 3 | 1, 2 | syl6 35 | . . . 4 ⊢ (𝑥 = 𝑡 → (𝑦 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 4 | 3 | com23 86 | . . 3 ⊢ (𝑥 = 𝑡 → (𝜑 → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 5 | 4 | alrimdv 1929 | . 2 ⊢ (𝑥 = 𝑡 → (𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 6 | df-sb 2065 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 7 | 5, 6 | imbitrrdi 252 | 1 ⊢ (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 | 
| This theorem is referenced by: sbequ12 2251 dfsb1 2486 dfsb2 2498 2eu6 2657 bj-ssbid1 36665 sb5ALT 44545 2pm13.193 44572 2pm13.193VD 44923 sb5ALTVD 44933 | 
| Copyright terms: Public domain | W3C validator |