Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbequ1 | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2071. (Revised by BJ, 22-Dec-2020.) |
Ref | Expression |
---|---|
sbequ1 | ⊢ (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equeucl 2032 | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝑦 = 𝑡 → 𝑥 = 𝑦)) | |
2 | ax12v 2177 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
3 | 1, 2 | syl6 35 | . . . 4 ⊢ (𝑥 = 𝑡 → (𝑦 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
4 | 3 | com23 86 | . . 3 ⊢ (𝑥 = 𝑡 → (𝜑 → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
5 | 4 | alrimdv 1931 | . 2 ⊢ (𝑥 = 𝑡 → (𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
6 | df-sb 2071 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
7 | 5, 6 | syl6ibr 255 | 1 ⊢ (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-12 2176 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-sb 2071 |
This theorem is referenced by: sbequ12 2251 dfsb1 2500 dfsb2 2512 sbi1OLD 2520 2eu6 2679 bj-ssbid1 34384 sb5ALT 41597 2pm13.193 41624 2pm13.193VD 41975 sb5ALTVD 41985 |
Copyright terms: Public domain | W3C validator |