MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ1 Structured version   Visualization version   GIF version

Theorem sbequ1 2240
Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.)
Assertion
Ref Expression
sbequ1 (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑))

Proof of Theorem sbequ1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 equeucl 2027 . . . . 5 (𝑥 = 𝑡 → (𝑦 = 𝑡𝑥 = 𝑦))
2 ax12v 2172 . . . . 5 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
31, 2syl6 35 . . . 4 (𝑥 = 𝑡 → (𝑦 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
43com23 86 . . 3 (𝑥 = 𝑡 → (𝜑 → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))))
54alrimdv 1932 . 2 (𝑥 = 𝑡 → (𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))))
6 df-sb 2068 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
75, 6syl6ibr 251 1 (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068
This theorem is referenced by:  sbequ12  2244  dfsb1  2485  dfsb2  2497  2eu6  2658  bj-ssbid1  34845  sb5ALT  42145  2pm13.193  42172  2pm13.193VD  42523  sb5ALTVD  42533
  Copyright terms: Public domain W3C validator