![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbequ1 | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993.) |
Ref | Expression |
---|---|
sbequ1 | ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.4 845 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
2 | 19.8a 2216 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
3 | df-sb 2065 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
4 | 1, 2, 3 | sylanbrc 579 | . 2 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) |
5 | 4 | ex 402 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∃wex 1875 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-12 2213 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-sb 2065 |
This theorem is referenced by: sbequ12 2278 dfsb2 2490 sbequi 2492 sbi1 2509 2eu6 2714 sb5ALT 39511 2pm13.193 39538 2pm13.193VD 39899 sb5ALTVD 39909 |
Copyright terms: Public domain | W3C validator |