MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbbid Structured version   Visualization version   GIF version

Theorem sbbid 2247
Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.) Remove dependency on ax-10 2141 and ax-13 2380. (Revised by Wolf Lammen, 24-Nov-2022.) Revise df-sb 2065. (Revised by Steven Nguyen, 11-Jul-2023.)
Hypotheses
Ref Expression
sbbid.1 𝑥𝜑
sbbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbbid (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))

Proof of Theorem sbbid
StepHypRef Expression
1 sbbid.1 . . 3 𝑥𝜑
2 sbbid.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimi 2214 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 spsbbi 2073 . 2 (∀𝑥(𝜓𝜒) → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))
53, 4syl 17 1 (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wnf 1781  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by:  2sbbid  2248  sbcom3  2514  sbco3  2521  wl-sbcom2d-lem1  37513  wl-2spsbbi  37519  wl-clabt  37552
  Copyright terms: Public domain W3C validator