| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbbid | Structured version Visualization version GIF version | ||
| Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.) Remove dependency on ax-10 2142 and ax-13 2377. (Revised by Wolf Lammen, 24-Nov-2022.) Revise df-sb 2066. (Revised by Steven Nguyen, 11-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbbid.1 | ⊢ Ⅎ𝑥𝜑 |
| sbbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbbid | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | sbbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | alrimi 2214 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 4 | spsbbi 2074 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: 2sbbid 2248 sbcom3 2511 sbco3 2518 wl-sbcom2d-lem1 37582 wl-2spsbbi 37588 wl-clabt 37621 |
| Copyright terms: Public domain | W3C validator |