Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3adantll2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
3adantll2.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
3adantll2 | ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll1 1211 | . . 3 ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
2 | simpll3 1213 | . . 3 ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
3 | 1, 2 | jca 512 | . 2 ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → (𝜑 ∧ 𝜓)) |
4 | simplr 766 | . 2 ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
5 | simpr 485 | . 2 ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜃) | |
6 | 3adantll2.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
7 | 3, 4, 5, 6 | syl21anc 835 | 1 ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: icccncfext 43428 fourierdlem42 43690 |
Copyright terms: Public domain | W3C validator |