Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3adantll2 Structured version   Visualization version   GIF version

Theorem 3adantll2 42475
Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
3adantll2.1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3adantll2 ((((𝜑𝜂𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem 3adantll2
StepHypRef Expression
1 simpll1 1210 . . 3 ((((𝜑𝜂𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜑)
2 simpll3 1212 . . 3 ((((𝜑𝜂𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓)
31, 2jca 511 . 2 ((((𝜑𝜂𝜓) ∧ 𝜒) ∧ 𝜃) → (𝜑𝜓))
4 simplr 765 . 2 ((((𝜑𝜂𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜒)
5 simpr 484 . 2 ((((𝜑𝜂𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜃)
6 3adantll2.1 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
73, 4, 5, 6syl21anc 834 1 ((((𝜑𝜂𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  icccncfext  43318  fourierdlem42  43580
  Copyright terms: Public domain W3C validator