Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3adantlr3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
3adantlr3.1 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
3adantlr3 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜂)) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜂)) ∧ 𝜃) → 𝜑) | |
2 | simplr1 1212 | . . 3 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜂)) ∧ 𝜃) → 𝜓) | |
3 | simplr2 1213 | . . 3 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜂)) ∧ 𝜃) → 𝜒) | |
4 | 2, 3 | jca 515 | . 2 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜂)) ∧ 𝜃) → (𝜓 ∧ 𝜒)) |
5 | simpr 488 | . 2 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜂)) ∧ 𝜃) → 𝜃) | |
6 | 3adantlr3.1 | . 2 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) | |
7 | 1, 4, 5, 6 | syl21anc 836 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜂)) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: fourierdlem42 43157 |
Copyright terms: Public domain | W3C validator |