Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem42 Structured version   Visualization version   GIF version

Theorem fourierdlem42 43661
Description: The set of points in a moved partition are finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.)
Hypotheses
Ref Expression
fourierdlem42.b (𝜑𝐵 ∈ ℝ)
fourierdlem42.c (𝜑𝐶 ∈ ℝ)
fourierdlem42.bc (𝜑𝐵 < 𝐶)
fourierdlem42.t 𝑇 = (𝐶𝐵)
fourierdlem42.a (𝜑𝐴 ⊆ (𝐵[,]𝐶))
fourierdlem42.af (𝜑𝐴 ∈ Fin)
fourierdlem42.ba (𝜑𝐵𝐴)
fourierdlem42.ca (𝜑𝐶𝐴)
fourierdlem42.d 𝐷 = (abs ∘ − )
fourierdlem42.i 𝐼 = ((𝐴 × 𝐴) ∖ I )
fourierdlem42.r 𝑅 = ran (𝐷𝐼)
fourierdlem42.e 𝐸 = inf(𝑅, ℝ, < )
fourierdlem42.x (𝜑𝑋 ∈ ℝ)
fourierdlem42.y (𝜑𝑌 ∈ ℝ)
fourierdlem42.j 𝐽 = (topGen‘ran (,))
fourierdlem42.k 𝐾 = (𝐽t (𝑋[,]𝑌))
fourierdlem42.h 𝐻 = {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴}
fourierdlem42.15 (𝜓 ↔ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
Assertion
Ref Expression
fourierdlem42 (𝜑𝐻 ∈ Fin)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑗,𝑘,𝑥   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝐸,𝑎,𝑏,𝑗,𝑘   𝐻,𝑎,𝑏,𝑥   𝑥,𝐼   𝐽,𝑎,𝑏   𝐾,𝑎,𝑏,𝑥   𝑥,𝑅   𝑇,𝑎,𝑏,𝑗,𝑘,𝑥   𝑥,𝑋   𝑥,𝑌   𝜑,𝑎,𝑏,𝑥   𝜓,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑥,𝑎,𝑏)   𝐵(𝑗,𝑘,𝑎,𝑏)   𝐶(𝑗,𝑘,𝑎,𝑏)   𝐷(𝑗,𝑘,𝑎,𝑏)   𝑅(𝑗,𝑘,𝑎,𝑏)   𝐸(𝑥)   𝐻(𝑗,𝑘)   𝐼(𝑗,𝑘,𝑎,𝑏)   𝐽(𝑥,𝑗,𝑘)   𝐾(𝑗,𝑘)   𝑋(𝑗,𝑘,𝑎,𝑏)   𝑌(𝑗,𝑘,𝑎,𝑏)

Proof of Theorem fourierdlem42
Dummy variables 𝑐 𝑑 𝑖 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem42.x . . . . 5 (𝜑𝑋 ∈ ℝ)
2 fourierdlem42.y . . . . 5 (𝜑𝑌 ∈ ℝ)
3 fourierdlem42.j . . . . . 6 𝐽 = (topGen‘ran (,))
4 fourierdlem42.k . . . . . 6 𝐾 = (𝐽t (𝑋[,]𝑌))
53, 4icccmp 23986 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝐾 ∈ Comp)
61, 2, 5syl2anc 584 . . . 4 (𝜑𝐾 ∈ Comp)
76adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → 𝐾 ∈ Comp)
8 fourierdlem42.h . . . . . 6 𝐻 = {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴}
9 ssrab2 4018 . . . . . . 7 {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ⊆ (𝑋[,]𝑌)
109a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ⊆ (𝑋[,]𝑌))
118, 10eqsstrid 3974 . . . . 5 (𝜑𝐻 ⊆ (𝑋[,]𝑌))
12 retop 23923 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
133, 12eqeltri 2837 . . . . . . 7 𝐽 ∈ Top
141, 2iccssred 13165 . . . . . . 7 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
15 uniretop 23924 . . . . . . . . 9 ℝ = (topGen‘ran (,))
163unieqi 4858 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
1715, 16eqtr4i 2771 . . . . . . . 8 ℝ = 𝐽
1817restuni 22311 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋[,]𝑌) ⊆ ℝ) → (𝑋[,]𝑌) = (𝐽t (𝑋[,]𝑌)))
1913, 14, 18sylancr 587 . . . . . 6 (𝜑 → (𝑋[,]𝑌) = (𝐽t (𝑋[,]𝑌)))
204unieqi 4858 . . . . . . 7 𝐾 = (𝐽t (𝑋[,]𝑌))
2120eqcomi 2749 . . . . . 6 (𝐽t (𝑋[,]𝑌)) = 𝐾
2219, 21eqtrdi 2796 . . . . 5 (𝜑 → (𝑋[,]𝑌) = 𝐾)
2311, 22sseqtrd 3966 . . . 4 (𝜑𝐻 𝐾)
2423adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → 𝐻 𝐾)
25 simpr 485 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → ¬ 𝐻 ∈ Fin)
26 eqid 2740 . . . 4 𝐾 = 𝐾
2726bwth 22559 . . 3 ((𝐾 ∈ Comp ∧ 𝐻 𝐾 ∧ ¬ 𝐻 ∈ Fin) → ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
287, 24, 25, 27syl3anc 1370 . 2 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
2911, 14sstrd 3936 . . . . . . . . . 10 (𝜑𝐻 ⊆ ℝ)
3029ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → 𝐻 ⊆ ℝ)
31 ne0i 4274 . . . . . . . . . 10 (𝑥 ∈ ((limPt‘𝐽)‘𝐻) → ((limPt‘𝐽)‘𝐻) ≠ ∅)
3231adantl 482 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → ((limPt‘𝐽)‘𝐻) ≠ ∅)
33 fourierdlem42.e . . . . . . . . . . 11 𝐸 = inf(𝑅, ℝ, < )
34 fourierdlem42.r . . . . . . . . . . . . 13 𝑅 = ran (𝐷𝐼)
35 absf 15047 . . . . . . . . . . . . . . . . . 18 abs:ℂ⟶ℝ
36 ffn 6598 . . . . . . . . . . . . . . . . . 18 (abs:ℂ⟶ℝ → abs Fn ℂ)
3735, 36ax-mp 5 . . . . . . . . . . . . . . . . 17 abs Fn ℂ
38 subf 11223 . . . . . . . . . . . . . . . . . 18 − :(ℂ × ℂ)⟶ℂ
39 ffn 6598 . . . . . . . . . . . . . . . . . 18 ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ))
4038, 39ax-mp 5 . . . . . . . . . . . . . . . . 17 − Fn (ℂ × ℂ)
41 frn 6605 . . . . . . . . . . . . . . . . . 18 ( − :(ℂ × ℂ)⟶ℂ → ran − ⊆ ℂ)
4238, 41ax-mp 5 . . . . . . . . . . . . . . . . 17 ran − ⊆ ℂ
43 fnco 6547 . . . . . . . . . . . . . . . . 17 ((abs Fn ℂ ∧ − Fn (ℂ × ℂ) ∧ ran − ⊆ ℂ) → (abs ∘ − ) Fn (ℂ × ℂ))
4437, 40, 42, 43mp3an 1460 . . . . . . . . . . . . . . . 16 (abs ∘ − ) Fn (ℂ × ℂ)
45 fourierdlem42.d . . . . . . . . . . . . . . . . 17 𝐷 = (abs ∘ − )
4645fneq1i 6528 . . . . . . . . . . . . . . . 16 (𝐷 Fn (ℂ × ℂ) ↔ (abs ∘ − ) Fn (ℂ × ℂ))
4744, 46mpbir 230 . . . . . . . . . . . . . . 15 𝐷 Fn (ℂ × ℂ)
48 fourierdlem42.i . . . . . . . . . . . . . . . 16 𝐼 = ((𝐴 × 𝐴) ∖ I )
49 fourierdlem42.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
50 fourierdlem42.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
51 fourierdlem42.c . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
5250, 51iccssred 13165 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
53 ax-resscn 10929 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
5452, 53sstrdi 3938 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
5549, 54sstrd 3936 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℂ)
56 xpss12 5605 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℂ ∧ 𝐴 ⊆ ℂ) → (𝐴 × 𝐴) ⊆ (ℂ × ℂ))
5755, 55, 56syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 × 𝐴) ⊆ (ℂ × ℂ))
5857ssdifssd 4082 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 × 𝐴) ∖ I ) ⊆ (ℂ × ℂ))
5948, 58eqsstrid 3974 . . . . . . . . . . . . . . 15 (𝜑𝐼 ⊆ (ℂ × ℂ))
60 fnssres 6553 . . . . . . . . . . . . . . 15 ((𝐷 Fn (ℂ × ℂ) ∧ 𝐼 ⊆ (ℂ × ℂ)) → (𝐷𝐼) Fn 𝐼)
6147, 59, 60sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝐼) Fn 𝐼)
62 fvres 6790 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐼 → ((𝐷𝐼)‘𝑥) = (𝐷𝑥))
6362adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) = (𝐷𝑥))
6445fveq1i 6772 . . . . . . . . . . . . . . . . . . 19 (𝐷𝑥) = ((abs ∘ − )‘𝑥)
6564a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → (𝐷𝑥) = ((abs ∘ − )‘𝑥))
66 ffun 6601 . . . . . . . . . . . . . . . . . . . 20 ( − :(ℂ × ℂ)⟶ℂ → Fun − )
6738, 66ax-mp 5 . . . . . . . . . . . . . . . . . . 19 Fun −
6859sselda 3926 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → 𝑥 ∈ (ℂ × ℂ))
6938fdmi 6610 . . . . . . . . . . . . . . . . . . . 20 dom − = (ℂ × ℂ)
7068, 69eleqtrrdi 2852 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → 𝑥 ∈ dom − )
71 fvco 6863 . . . . . . . . . . . . . . . . . . 19 ((Fun − ∧ 𝑥 ∈ dom − ) → ((abs ∘ − )‘𝑥) = (abs‘( − ‘𝑥)))
7267, 70, 71sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ((abs ∘ − )‘𝑥) = (abs‘( − ‘𝑥)))
7363, 65, 723eqtrd 2784 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) = (abs‘( − ‘𝑥)))
7438a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → − :(ℂ × ℂ)⟶ℂ)
7574, 68ffvelrnd 6959 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ( − ‘𝑥) ∈ ℂ)
7675abscld 15146 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → (abs‘( − ‘𝑥)) ∈ ℝ)
7773, 76eqeltrd 2841 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) ∈ ℝ)
78 elxp2 5614 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℂ × ℂ) ↔ ∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩)
7968, 78sylib 217 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → ∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩)
80 fveq2 6771 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) = ( − ‘⟨𝑦, 𝑧⟩))
81803ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘𝑥) = ( − ‘⟨𝑦, 𝑧⟩))
82 df-ov 7274 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝑧) = ( − ‘⟨𝑦, 𝑧⟩)
83 simp1l 1196 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝜑)
84 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥 = ⟨𝑦, 𝑧⟩)
85 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥𝐼)
8684, 85eqeltrrd 2842 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
8786adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝐼) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
88873adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
8955adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝐴 ⊆ ℂ)
9048eleq2i 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑦, 𝑧⟩ ∈ 𝐼 ↔ ⟨𝑦, 𝑧⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
91 eldif 3902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑦, 𝑧⟩ ∈ ((𝐴 × 𝐴) ∖ I ) ↔ (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ∧ ¬ ⟨𝑦, 𝑧⟩ ∈ I ))
9290, 91sylbb 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ∧ ¬ ⟨𝑦, 𝑧⟩ ∈ I ))
9392simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴))
94 opelxp 5626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ↔ (𝑦𝐴𝑧𝐴))
9593, 94sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → (𝑦𝐴𝑧𝐴))
9695adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → (𝑦𝐴𝑧𝐴))
9796simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦𝐴)
9889, 97sseldd 3927 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦 ∈ ℂ)
9996simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑧𝐴)
10089, 99sseldd 3927 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑧 ∈ ℂ)
10192simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ ⟨𝑦, 𝑧⟩ ∈ I )
102 df-br 5080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 I 𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ I )
103101, 102sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ 𝑦 I 𝑧)
104 vex 3435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 ∈ V
105104ideq 5760 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 I 𝑧𝑦 = 𝑧)
106103, 105sylnib 328 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ 𝑦 = 𝑧)
107106neqned 2952 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑦, 𝑧⟩ ∈ 𝐼𝑦𝑧)
108107adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦𝑧)
10998, 100, 108subne0d 11341 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → (𝑦𝑧) ≠ 0)
11083, 88, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → (𝑦𝑧) ≠ 0)
11182, 110eqnetrrid 3021 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘⟨𝑦, 𝑧⟩) ≠ 0)
11281, 111eqnetrd 3013 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘𝑥) ≠ 0)
1131123exp 1118 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) ≠ 0)))
114113rexlimdvv 3224 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → (∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) ≠ 0))
11579, 114mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ( − ‘𝑥) ≠ 0)
116 absgt0 15034 . . . . . . . . . . . . . . . . . . 19 (( − ‘𝑥) ∈ ℂ → (( − ‘𝑥) ≠ 0 ↔ 0 < (abs‘( − ‘𝑥))))
11775, 116syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → (( − ‘𝑥) ≠ 0 ↔ 0 < (abs‘( − ‘𝑥))))
118115, 117mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → 0 < (abs‘( − ‘𝑥)))
11973eqcomd 2746 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → (abs‘( − ‘𝑥)) = ((𝐷𝐼)‘𝑥))
120118, 119breqtrd 5105 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 0 < ((𝐷𝐼)‘𝑥))
12177, 120elrpd 12768 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) ∈ ℝ+)
122121ralrimiva 3110 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐼 ((𝐷𝐼)‘𝑥) ∈ ℝ+)
123 fnfvrnss 6991 . . . . . . . . . . . . . 14 (((𝐷𝐼) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝐷𝐼)‘𝑥) ∈ ℝ+) → ran (𝐷𝐼) ⊆ ℝ+)
12461, 122, 123syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ran (𝐷𝐼) ⊆ ℝ+)
12534, 124eqsstrid 3974 . . . . . . . . . . . 12 (𝜑𝑅 ⊆ ℝ+)
126 ltso 11056 . . . . . . . . . . . . . 14 < Or ℝ
127126a1i 11 . . . . . . . . . . . . 13 (𝜑 → < Or ℝ)
128 fourierdlem42.af . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ Fin)
129 xpfi 9063 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ∈ Fin)
130128, 128, 129syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 × 𝐴) ∈ Fin)
131 diffi 8944 . . . . . . . . . . . . . . . . . 18 ((𝐴 × 𝐴) ∈ Fin → ((𝐴 × 𝐴) ∖ I ) ∈ Fin)
132130, 131syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 × 𝐴) ∖ I ) ∈ Fin)
13348, 132eqeltrid 2845 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ Fin)
134 fnfi 8946 . . . . . . . . . . . . . . . 16 (((𝐷𝐼) Fn 𝐼𝐼 ∈ Fin) → (𝐷𝐼) ∈ Fin)
13561, 133, 134syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐼) ∈ Fin)
136 rnfi 9080 . . . . . . . . . . . . . . 15 ((𝐷𝐼) ∈ Fin → ran (𝐷𝐼) ∈ Fin)
137135, 136syl 17 . . . . . . . . . . . . . 14 (𝜑 → ran (𝐷𝐼) ∈ Fin)
13834, 137eqeltrid 2845 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Fin)
13934a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 = ran (𝐷𝐼))
14045a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 = (abs ∘ − ))
141140reseq1d 5889 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷𝐼) = ((abs ∘ − ) ↾ 𝐼))
142141fveq1d 6773 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) = (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩))
143 fourierdlem42.ba . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵𝐴)
144 fourierdlem42.ca . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶𝐴)
145 opelxp 5626 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) ↔ (𝐵𝐴𝐶𝐴))
146143, 144, 145sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴))
147 fourierdlem42.bc . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 < 𝐶)
14850, 147ltned 11111 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵𝐶)
149148neneqd 2950 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 𝐵 = 𝐶)
150 ideqg 5759 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶𝐴 → (𝐵 I 𝐶𝐵 = 𝐶))
151144, 150syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐵 I 𝐶𝐵 = 𝐶))
152149, 151mtbird 325 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ¬ 𝐵 I 𝐶)
153 df-br 5080 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 I 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ I )
154152, 153sylnib 328 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ ⟨𝐵, 𝐶⟩ ∈ I )
155146, 154eldifd 3903 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
156155, 48eleqtrrdi 2852 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ 𝐼)
157 fvres 6790 . . . . . . . . . . . . . . . . . 18 (⟨𝐵, 𝐶⟩ ∈ 𝐼 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩) = ((abs ∘ − )‘⟨𝐵, 𝐶⟩))
158156, 157syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩) = ((abs ∘ − )‘⟨𝐵, 𝐶⟩))
15950recnd 11004 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℂ)
16051recnd 11004 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℂ)
161 opelxp 5626 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝐵, 𝐶⟩ ∈ (ℂ × ℂ) ↔ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
162159, 160, 161sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (ℂ × ℂ))
163162, 69eleqtrrdi 2852 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ dom − )
164 fvco 6863 . . . . . . . . . . . . . . . . . . 19 ((Fun − ∧ ⟨𝐵, 𝐶⟩ ∈ dom − ) → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘( − ‘⟨𝐵, 𝐶⟩)))
16567, 163, 164sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘( − ‘⟨𝐵, 𝐶⟩)))
166 df-ov 7274 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐶) = ( − ‘⟨𝐵, 𝐶⟩)
167166eqcomi 2749 . . . . . . . . . . . . . . . . . . . 20 ( − ‘⟨𝐵, 𝐶⟩) = (𝐵𝐶)
168167a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( − ‘⟨𝐵, 𝐶⟩) = (𝐵𝐶))
169168fveq2d 6775 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘( − ‘⟨𝐵, 𝐶⟩)) = (abs‘(𝐵𝐶)))
170165, 169eqtrd 2780 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘(𝐵𝐶)))
171142, 158, 1703eqtrrd 2785 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(𝐵𝐶)) = ((𝐷𝐼)‘⟨𝐵, 𝐶⟩))
172 fnfvelrn 6955 . . . . . . . . . . . . . . . . 17 (((𝐷𝐼) Fn 𝐼 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐼) → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) ∈ ran (𝐷𝐼))
17361, 156, 172syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) ∈ ran (𝐷𝐼))
174171, 173eqeltrd 2841 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝐵𝐶)) ∈ ran (𝐷𝐼))
175 ne0i 4274 . . . . . . . . . . . . . . 15 ((abs‘(𝐵𝐶)) ∈ ran (𝐷𝐼) → ran (𝐷𝐼) ≠ ∅)
176174, 175syl 17 . . . . . . . . . . . . . 14 (𝜑 → ran (𝐷𝐼) ≠ ∅)
177139, 176eqnetrd 3013 . . . . . . . . . . . . 13 (𝜑𝑅 ≠ ∅)
178 resss 5915 . . . . . . . . . . . . . . . . 17 (𝐷𝐼) ⊆ 𝐷
179 rnss 5847 . . . . . . . . . . . . . . . . 17 ((𝐷𝐼) ⊆ 𝐷 → ran (𝐷𝐼) ⊆ ran 𝐷)
180178, 179ax-mp 5 . . . . . . . . . . . . . . . 16 ran (𝐷𝐼) ⊆ ran 𝐷
18145rneqi 5845 . . . . . . . . . . . . . . . . 17 ran 𝐷 = ran (abs ∘ − )
182 rncoss 5880 . . . . . . . . . . . . . . . . . 18 ran (abs ∘ − ) ⊆ ran abs
183 frn 6605 . . . . . . . . . . . . . . . . . . 19 (abs:ℂ⟶ℝ → ran abs ⊆ ℝ)
18435, 183ax-mp 5 . . . . . . . . . . . . . . . . . 18 ran abs ⊆ ℝ
185182, 184sstri 3935 . . . . . . . . . . . . . . . . 17 ran (abs ∘ − ) ⊆ ℝ
186181, 185eqsstri 3960 . . . . . . . . . . . . . . . 16 ran 𝐷 ⊆ ℝ
187180, 186sstri 3935 . . . . . . . . . . . . . . 15 ran (𝐷𝐼) ⊆ ℝ
18834, 187eqsstri 3960 . . . . . . . . . . . . . 14 𝑅 ⊆ ℝ
189188a1i 11 . . . . . . . . . . . . 13 (𝜑𝑅 ⊆ ℝ)
190 fiinfcl 9238 . . . . . . . . . . . . 13 (( < Or ℝ ∧ (𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝑅 ⊆ ℝ)) → inf(𝑅, ℝ, < ) ∈ 𝑅)
191127, 138, 177, 189, 190syl13anc 1371 . . . . . . . . . . . 12 (𝜑 → inf(𝑅, ℝ, < ) ∈ 𝑅)
192125, 191sseldd 3927 . . . . . . . . . . 11 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ+)
19333, 192eqeltrid 2845 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ+)
194193ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → 𝐸 ∈ ℝ+)
1953, 30, 32, 194lptre2pt 43152 . . . . . . . 8 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
196 simpll 764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝜑)
19729sselda 3926 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐻) → 𝑦 ∈ ℝ)
198197adantrr 714 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → 𝑦 ∈ ℝ)
199198adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
20029sselda 3926 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐻) → 𝑧 ∈ ℝ)
201200adantrl 713 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → 𝑧 ∈ ℝ)
202201adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑧 ∈ ℝ)
203 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑦𝑧)
204199, 202, 2033jca 1127 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧))
2058eleq2i 2832 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐻𝑦 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴})
206 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝑥 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
207206eleq1d 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
208207rexbidv 3228 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
209 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
210209oveq2d 7287 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
211210eleq1d 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
212211cbvrexvw 3382 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
213208, 212bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
214213elrab 3626 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ↔ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
215205, 214sylbb 218 . . . . . . . . . . . . . . . . . 18 (𝑦𝐻 → (𝑦 ∈ (𝑋[,]𝑌) ∧ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
216215simprd 496 . . . . . . . . . . . . . . . . 17 (𝑦𝐻 → ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
217216adantr 481 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑧𝐻) → ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
2188eleq2i 2832 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐻𝑧 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴})
219 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (𝑥 + (𝑘 · 𝑇)) = (𝑧 + (𝑘 · 𝑇)))
220219eleq1d 2825 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
221220rexbidv 3228 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
222221elrab 3626 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ↔ (𝑧 ∈ (𝑋[,]𝑌) ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
223218, 222sylbb 218 . . . . . . . . . . . . . . . . . 18 (𝑧𝐻 → (𝑧 ∈ (𝑋[,]𝑌) ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
224223simprd 496 . . . . . . . . . . . . . . . . 17 (𝑧𝐻 → ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)
225224adantl 482 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑧𝐻) → ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)
226 reeanv 3295 . . . . . . . . . . . . . . . 16 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ (∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
227217, 225, 226sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝑦𝐻𝑧𝐻) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
228227ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
229 simplll 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → 𝜑)
230 simpl1 1190 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑦 ∈ ℝ)
231 simpl2 1191 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑧 ∈ ℝ)
232 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑦 < 𝑧)
233230, 231, 2323jca 1127 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
234233adantll 711 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
235234adantlr 712 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
236 simplr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
237 eleq1 2828 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → (𝑏 ∈ ℝ ↔ 𝑧 ∈ ℝ))
238 breq2 5083 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → (𝑦 < 𝑏𝑦 < 𝑧))
239237, 2383anbi23d 1438 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → ((𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏) ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)))
240239anbi2d 629 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ↔ (𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))))
241 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (𝑏 + (𝑘 · 𝑇)) = (𝑧 + (𝑘 · 𝑇)))
242241eleq1d 2825 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → ((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
243242anbi2d 629 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → (((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)))
2442432rexbidv 3231 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)))
245240, 244anbi12d 631 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))))
246 oveq2 7279 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → (𝑦𝑏) = (𝑦𝑧))
247246fveq2d 6775 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → (abs‘(𝑦𝑏)) = (abs‘(𝑦𝑧)))
248247breq2d 5091 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (𝐸 ≤ (abs‘(𝑦𝑏)) ↔ 𝐸 ≤ (abs‘(𝑦𝑧))))
249245, 248imbi12d 345 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑧 → ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑏))) ↔ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑧)))))
250 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → (𝑎 ∈ ℝ ↔ 𝑦 ∈ ℝ))
251 breq1 5082 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → (𝑎 < 𝑏𝑦 < 𝑏))
252250, 2513anbi13d 1437 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ↔ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)))
253252anbi2d 629 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ↔ (𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏))))
254 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑦 → (𝑎 + (𝑗 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
255254eleq1d 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
256255anbi1d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → (((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
2572562rexbidv 3231 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
258253, 257anbi12d 631 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑦 → (((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))))
259 oveq1 7278 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → (𝑎𝑏) = (𝑦𝑏))
260259fveq2d 6775 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → (abs‘(𝑎𝑏)) = (abs‘(𝑦𝑏)))
261260breq2d 5091 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑦 → (𝐸 ≤ (abs‘(𝑎𝑏)) ↔ 𝐸 ≤ (abs‘(𝑦𝑏))))
262258, 261imbi12d 345 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → ((((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏))) ↔ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑏)))))
263 fourierdlem42.15 . . . . . . . . . . . . . . . . . . 19 (𝜓 ↔ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
264263simprbi 497 . . . . . . . . . . . . . . . . . . . 20 (𝜓 → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
265263biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
266265simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → (𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)))
267266simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝜑)
268267, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝐵 ∈ ℝ)
269268adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℝ)
270267, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝐶 ∈ ℝ)
271270adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐶 ∈ ℝ)
272267, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝐴 ⊆ (𝐵[,]𝐶))
273272sselda 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ (𝐵[,]𝐶))
274273adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ (𝐵[,]𝐶))
275272sselda 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶))
276275adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶))
277269, 271, 274, 276iccsuble 43028 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (𝐶𝐵))
278 fourierdlem42.t . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑇 = (𝐶𝐵)
279277, 278breqtrrdi 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
2802793adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
281280adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
282 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → ¬ 𝑘𝑗)
283 zre 12323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
284283adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑗 ∈ ℝ)
285284ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑗 ∈ ℝ)
286 zre 12323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
287286adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
288287ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑘 ∈ ℝ)
289285, 288ltnled 11122 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → (𝑗 < 𝑘 ↔ ¬ 𝑘𝑗))
290282, 289mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑗 < 𝑘)
29151, 50resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝐶𝐵) ∈ ℝ)
292278, 291eqeltrid 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑇 ∈ ℝ)
293267, 292syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝑇 ∈ ℝ)
294293ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ∈ ℝ)
295287adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℝ)
296284adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℝ)
297295, 296resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘𝑗) ∈ ℝ)
298293adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑇 ∈ ℝ)
299297, 298remulcld 11006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) ∈ ℝ)
300299adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑘𝑗) · 𝑇) ∈ ℝ)
301266simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏))
302301simp2d 1142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑏 ∈ ℝ)
303302adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑏 ∈ ℝ)
304286adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
305293adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
306304, 305remulcld 11006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
307306adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑇) ∈ ℝ)
308303, 307readdcld 11005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
309301simp1d 1141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑎 ∈ ℝ)
310309adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑎 ∈ ℝ)
311283adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
312293adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → 𝑇 ∈ ℝ)
313311, 312remulcld 11006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ) → (𝑗 · 𝑇) ∈ ℝ)
314313adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 · 𝑇) ∈ ℝ)
315310, 314readdcld 11005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
316308, 315resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
317316adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
318293recnd 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑇 ∈ ℂ)
319318mulid2d 10994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → (1 · 𝑇) = 𝑇)
320319eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝑇 = (1 · 𝑇))
321320ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 = (1 · 𝑇))
322 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑗 < 𝑘)
323 zltlem1 12373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 < 𝑘𝑗 ≤ (𝑘 − 1)))
324323ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑗 < 𝑘𝑗 ≤ (𝑘 − 1)))
325322, 324mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑗 ≤ (𝑘 − 1))
326284ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 𝑗 ∈ ℝ)
327 peano2rem 11288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ℝ → (𝑘 − 1) ∈ ℝ)
328295, 327syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 − 1) ∈ ℝ)
329328adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑘 − 1) ∈ ℝ)
330 1re 10976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1 ∈ ℝ
331 resubcl 11285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((1 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (1 − 𝑗) ∈ ℝ)
332330, 326, 331sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (1 − 𝑗) ∈ ℝ)
333 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 𝑗 ≤ (𝑘 − 1))
334326, 329, 332, 333leadd1dd 11589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑗 + (1 − 𝑗)) ≤ ((𝑘 − 1) + (1 − 𝑗)))
335 zcn 12324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
336335adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑗 ∈ ℂ)
337 1cnd 10971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 1 ∈ ℂ)
338336, 337pncan3d 11335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 + (1 − 𝑗)) = 1)
339338ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑗 + (1 − 𝑗)) = 1)
340 zcn 12324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
341340adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
342341, 337, 336npncand 11356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 − 1) + (1 − 𝑗)) = (𝑘𝑗))
343342ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → ((𝑘 − 1) + (1 − 𝑗)) = (𝑘𝑗))
344334, 339, 3433brtr3d 5110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 1 ≤ (𝑘𝑗))
345325, 344syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 1 ≤ (𝑘𝑗))
346330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 1 ∈ ℝ)
347297adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑘𝑗) ∈ ℝ)
34850, 51posdifd 11562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝐵 < 𝐶 ↔ 0 < (𝐶𝐵)))
349147, 348mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → 0 < (𝐶𝐵))
350349, 278breqtrrdi 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → 0 < 𝑇)
351292, 350elrpd 12768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝑇 ∈ ℝ+)
352267, 351syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑇 ∈ ℝ+)
353352ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ∈ ℝ+)
354346, 347, 353lemul1d 12814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (1 ≤ (𝑘𝑗) ↔ (1 · 𝑇) ≤ ((𝑘𝑗) · 𝑇)))
355345, 354mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (1 · 𝑇) ≤ ((𝑘𝑗) · 𝑇))
356321, 355eqbrtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ≤ ((𝑘𝑗) · 𝑇))
357302, 309resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → (𝑏𝑎) ∈ ℝ)
358301simp3d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜓𝑎 < 𝑏)
359309, 302posdifd 11562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜓 → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
360358, 359mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → 0 < (𝑏𝑎))
361357, 360elrpd 12768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (𝑏𝑎) ∈ ℝ+)
362361adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏𝑎) ∈ ℝ+)
363299, 362ltaddrp2d 12805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) < ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
364302recnd 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓𝑏 ∈ ℂ)
365364adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑏 ∈ ℂ)
366306recnd 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℂ)
367366adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑇) ∈ ℂ)
368309recnd 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓𝑎 ∈ ℂ)
369368adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑎 ∈ ℂ)
370313recnd 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → (𝑗 · 𝑇) ∈ ℂ)
371370adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 · 𝑇) ∈ ℂ)
372365, 367, 369, 371addsub4d 11379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘 · 𝑇) − (𝑗 · 𝑇))))
373340ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
374335ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℂ)
375318adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑇 ∈ ℂ)
376373, 374, 375subdird 11432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) = ((𝑘 · 𝑇) − (𝑗 · 𝑇)))
377376eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑇) − (𝑗 · 𝑇)) = ((𝑘𝑗) · 𝑇))
378377oveq2d 7287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + ((𝑘 · 𝑇) − (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
379372, 378eqtr2d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) = ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
380363, 379breqtrd 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
381380adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑘𝑗) · 𝑇) < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
382294, 300, 317, 356, 381lelttrd 11133 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
383294, 317ltnled 11122 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑇 < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ↔ ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇))
384382, 383mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
385290, 384syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
3863853adantl3 1167 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑘𝑗) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
387281, 386condan 815 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘𝑗)
388188, 191sselid 3924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
38933, 388eqeltrid 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐸 ∈ ℝ)
390267, 389syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓𝐸 ∈ ℝ)
3913903ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ∈ ℝ)
392391ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ∈ ℝ)
3932933ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℝ)
394393ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ∈ ℝ)
395284, 287resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗𝑘) ∈ ℝ)
396395adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗𝑘) ∈ ℝ)
397396, 298remulcld 11006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
3983973adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
399398ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
400 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝜑)
401143, 144jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝐵𝐴𝐶𝐴))
402400, 401, 1473jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶))
403 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑑 = 𝐶 → (𝑑𝐴𝐶𝐴))
404403anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → ((𝐵𝐴𝑑𝐴) ↔ (𝐵𝐴𝐶𝐴)))
405 breq2 5083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → (𝐵 < 𝑑𝐵 < 𝐶))
406404, 4053anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = 𝐶 → ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) ↔ (𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶)))
407 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → (𝑑𝐵) = (𝐶𝐵))
408407breq2d 5091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = 𝐶 → (𝐸 ≤ (𝑑𝐵) ↔ 𝐸 ≤ (𝐶𝐵)))
409406, 408imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑑 = 𝐶 → (((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵)) ↔ ((𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶) → 𝐸 ≤ (𝐶𝐵))))
410 simp2l 1198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐵𝐴)
411 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = 𝐵 → (𝑐𝐴𝐵𝐴))
412411anbi1d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → ((𝑐𝐴𝑑𝐴) ↔ (𝐵𝐴𝑑𝐴)))
413 breq1 5082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → (𝑐 < 𝑑𝐵 < 𝑑))
414412, 4133anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = 𝐵 → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑)))
415 oveq2 7279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → (𝑑𝑐) = (𝑑𝐵))
416415breq2d 5091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = 𝐵 → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ (𝑑𝐵)))
417414, 416imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑐 = 𝐵 → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵))))
418188a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑅 ⊆ ℝ)
419 0re 10978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 0 ∈ ℝ
42034eleq2i 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑦𝑅𝑦 ∈ ran (𝐷𝐼))
421420biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦𝑅𝑦 ∈ ran (𝐷𝐼))
422421adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → 𝑦 ∈ ran (𝐷𝐼))
42361adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑𝑦𝑅) → (𝐷𝐼) Fn 𝐼)
424 fvelrnb 6827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐷𝐼) Fn 𝐼 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
425423, 424syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
426422, 425mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑦𝑅) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦)
427121rpge0d 12775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑𝑥𝐼) → 0 ≤ ((𝐷𝐼)‘𝑥))
4284273adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → 0 ≤ ((𝐷𝐼)‘𝑥))
429 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → ((𝐷𝐼)‘𝑥) = 𝑦)
430428, 429breqtrd 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → 0 ≤ 𝑦)
4314303exp 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜑 → (𝑥𝐼 → (((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦)))
432431adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → (𝑥𝐼 → (((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦)))
433432rexlimdv 3214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑦𝑅) → (∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦))
434426, 433mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑𝑦𝑅) → 0 ≤ 𝑦)
435434ralrimiva 3110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝜑 → ∀𝑦𝑅 0 ≤ 𝑦)
436 breq1 5082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
437436ralbidv 3123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥 = 0 → (∀𝑦𝑅 𝑥𝑦 ↔ ∀𝑦𝑅 0 ≤ 𝑦))
438437rspcev 3561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((0 ∈ ℝ ∧ ∀𝑦𝑅 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
439419, 435, 438sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
4404393ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
441 pm3.22 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑐𝐴𝑑𝐴) → (𝑑𝐴𝑐𝐴))
442 opelxp 5626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴) ↔ (𝑑𝐴𝑐𝐴))
443441, 442sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑐𝐴𝑑𝐴) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
4444433ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
44549, 52sstrd 3936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝜑𝐴 ⊆ ℝ)
446445sselda 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑𝑐𝐴) → 𝑐 ∈ ℝ)
447446adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → 𝑐 ∈ ℝ)
4484473adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐 ∈ ℝ)
449 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐 < 𝑑)
450448, 449gtned 11110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑑𝑐)
451450neneqd 2950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ¬ 𝑑 = 𝑐)
452 df-br 5080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑑 I 𝑐 ↔ ⟨𝑑, 𝑐⟩ ∈ I )
453 vex 3435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑐 ∈ V
454453ideq 5760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑑 I 𝑐𝑑 = 𝑐)
455452, 454bitr3i 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (⟨𝑑, 𝑐⟩ ∈ I ↔ 𝑑 = 𝑐)
456451, 455sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ¬ ⟨𝑑, 𝑐⟩ ∈ I )
457444, 456eldifd 3903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
458457, 48eleqtrrdi 2852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ 𝐼)
459448, 449ltned 11111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐𝑑)
4601413ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (𝐷𝐼) = ((abs ∘ − ) ↾ 𝐼))
461460fveq1d 6773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩))
4624433ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
463 necom 2999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑐𝑑𝑑𝑐)
464463biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝑐𝑑𝑑𝑐)
465464neneqd 2950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑐𝑑 → ¬ 𝑑 = 𝑐)
4664653ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ¬ 𝑑 = 𝑐)
467466, 455sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ¬ ⟨𝑑, 𝑐⟩ ∈ I )
468462, 467eldifd 3903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
469468, 48eleqtrrdi 2852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ 𝐼)
470 fvres 6790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (⟨𝑑, 𝑐⟩ ∈ 𝐼 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩) = ((abs ∘ − )‘⟨𝑑, 𝑐⟩))
471469, 470syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩) = ((abs ∘ − )‘⟨𝑑, 𝑐⟩))
472 simp1 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → 𝜑)
473472, 469jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼))
474 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝑥 = ⟨𝑑, 𝑐⟩ → (𝑥𝐼 ↔ ⟨𝑑, 𝑐⟩ ∈ 𝐼))
475474anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = ⟨𝑑, 𝑐⟩ → ((𝜑𝑥𝐼) ↔ (𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼)))
476 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = ⟨𝑑, 𝑐⟩ → (𝑥 ∈ dom − ↔ ⟨𝑑, 𝑐⟩ ∈ dom − ))
477475, 476imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑥 = ⟨𝑑, 𝑐⟩ → (((𝜑𝑥𝐼) → 𝑥 ∈ dom − ) ↔ ((𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼) → ⟨𝑑, 𝑐⟩ ∈ dom − )))
478477, 70vtoclg 3504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (⟨𝑑, 𝑐⟩ ∈ 𝐼 → ((𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼) → ⟨𝑑, 𝑐⟩ ∈ dom − ))
479469, 473, 478sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ dom − )
480 fvco 6863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((Fun − ∧ ⟨𝑑, 𝑐⟩ ∈ dom − ) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘( − ‘⟨𝑑, 𝑐⟩)))
48167, 479, 480sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘( − ‘⟨𝑑, 𝑐⟩)))
482 df-ov 7274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑑𝑐) = ( − ‘⟨𝑑, 𝑐⟩)
483482eqcomi 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ( − ‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)
484483fveq2i 6774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (abs‘( − ‘⟨𝑑, 𝑐⟩)) = (abs‘(𝑑𝑐))
485481, 484eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
486461, 471, 4853eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
487459, 486syld3an3 1408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
488445sselda 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑𝑑𝐴) → 𝑑 ∈ ℝ)
489488adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → 𝑑 ∈ ℝ)
4904893adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑑 ∈ ℝ)
491448, 490, 449ltled 11123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐𝑑)
492448, 490, 491abssubge0d 15141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (abs‘(𝑑𝑐)) = (𝑑𝑐))
493487, 492eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐))
494 fveq2 6771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑥 = ⟨𝑑, 𝑐⟩ → ((𝐷𝐼)‘𝑥) = ((𝐷𝐼)‘⟨𝑑, 𝑐⟩))
495494eqeq1d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = ⟨𝑑, 𝑐⟩ → (((𝐷𝐼)‘𝑥) = (𝑑𝑐) ↔ ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)))
496495rspcev 3561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((⟨𝑑, 𝑐⟩ ∈ 𝐼 ∧ ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))
497458, 493, 496syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))
498489, 447resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑑𝑐) ∈ ℝ)
499 elex 3449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑑𝑐) ∈ ℝ → (𝑑𝑐) ∈ V)
500498, 499syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑑𝑐) ∈ V)
5015003adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ V)
502 simp1 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝜑)
503 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦 = (𝑑𝑐) → (𝑦 ∈ ran (𝐷𝐼) ↔ (𝑑𝑐) ∈ ran (𝐷𝐼)))
504 eqeq2 2752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑦 = (𝑑𝑐) → (((𝐷𝐼)‘𝑥) = 𝑦 ↔ ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
505504rexbidv 3228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦 = (𝑑𝑐) → (∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦 ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
506503, 505bibi12d 346 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑦 = (𝑑𝑐) → ((𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦) ↔ ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))))
507506imbi2d 341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑦 = (𝑑𝑐) → ((𝜑 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦)) ↔ (𝜑 → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))))
50861, 424syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝜑 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
509507, 508vtoclg 3504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑑𝑐) ∈ V → (𝜑 → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))))
510501, 502, 509sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
511497, 510mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ ran (𝐷𝐼))
512511, 34eleqtrrdi 2852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ 𝑅)
513 infrelb 11960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦 ∧ (𝑑𝑐) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑑𝑐))
514418, 440, 512, 513syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → inf(𝑅, ℝ, < ) ≤ (𝑑𝑐))
51533, 514eqbrtrid 5114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐))
516417, 515vtoclg 3504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐵𝐴 → ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵)))
517410, 516mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵))
518409, 517vtoclg 3504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐶𝐴 → ((𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶) → 𝐸 ≤ (𝐶𝐵)))
519144, 402, 518sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐸 ≤ (𝐶𝐵))
520519, 278breqtrrdi 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐸𝑇)
521267, 520syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓𝐸𝑇)
5225213ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸𝑇)
523522ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸𝑇)
524364adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑘 ∈ ℤ) → 𝑏 ∈ ℂ)
525524, 366pncan2d 11334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) = (𝑘 · 𝑇))
526525oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑘 ∈ ℤ) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) = ((𝑘 · 𝑇) / 𝑇))
527340adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
528318adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑇 ∈ ℂ)
529419a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝜑 → 0 ∈ ℝ)
530529, 350gtned 11110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑𝑇 ≠ 0)
531267, 530syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓𝑇 ≠ 0)
532531adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑇 ≠ 0)
533527, 528, 532divcan4d 11757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑘 ∈ ℤ) → ((𝑘 · 𝑇) / 𝑇) = 𝑘)
534526, 533eqtr2d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑘 ∈ ℤ) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
535534adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
536535adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
537 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑏 + (𝑘 · 𝑇)) − 𝑏))
538537oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
539538adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
540368adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑎 ∈ ℂ)
541364adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑏 ∈ ℂ)
542540, 370, 541addsubd 11353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑎𝑏) + (𝑗 · 𝑇)))
543540, 541subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → (𝑎𝑏) ∈ ℂ)
544543, 370addcomd 11177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) + (𝑗 · 𝑇)) = ((𝑗 · 𝑇) + (𝑎𝑏)))
545542, 544eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑗 · 𝑇) + (𝑎𝑏)))
546545oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑗 · 𝑇) + (𝑎𝑏)) / 𝑇))
547318adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → 𝑇 ∈ ℂ)
548531adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → 𝑇 ≠ 0)
549370, 543, 547, 548divdird 11789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑗 · 𝑇) + (𝑎𝑏)) / 𝑇) = (((𝑗 · 𝑇) / 𝑇) + ((𝑎𝑏) / 𝑇)))
550335adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → 𝑗 ∈ ℂ)
551550, 547, 548divcan4d 11757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → ((𝑗 · 𝑇) / 𝑇) = 𝑗)
552551oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑗 · 𝑇) / 𝑇) + ((𝑎𝑏) / 𝑇)) = (𝑗 + ((𝑎𝑏) / 𝑇)))
553546, 549, 5523eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
554553adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
555554adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
556536, 539, 5553eqtr2d 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 = (𝑗 + ((𝑎𝑏) / 𝑇)))
557309, 302resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓 → (𝑎𝑏) ∈ ℝ)
558309, 302sublt0d 11601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜓 → ((𝑎𝑏) < 0 ↔ 𝑎 < 𝑏))
559358, 558mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓 → (𝑎𝑏) < 0)
560557, 352, 559divlt0gt0d 42795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓 → ((𝑎𝑏) / 𝑇) < 0)
561560adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) < 0)
562335subidd 11320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑗 ∈ ℤ → (𝑗𝑗) = 0)
563562eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑗 ∈ ℤ → 0 = (𝑗𝑗))
564563adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → 0 = (𝑗𝑗))
565561, 564breqtrd 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) < (𝑗𝑗))
566557, 293, 531redivcld 11803 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓 → ((𝑎𝑏) / 𝑇) ∈ ℝ)
567566adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) ∈ ℝ)
568311, 567, 311ltaddsub2d 11576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → ((𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗 ↔ ((𝑎𝑏) / 𝑇) < (𝑗𝑗)))
569565, 568mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓𝑗 ∈ ℤ) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
570569adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
571570adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
572556, 571eqbrtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 < 𝑗)
573320ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 = (1 · 𝑇))
574 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 < 𝑗)
575 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ∈ ℤ)
576 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑗 ∈ ℤ)
577 zltp1le 12370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑘 < 𝑗 ↔ (𝑘 + 1) ≤ 𝑗))
578575, 576, 577syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → (𝑘 < 𝑗 ↔ (𝑘 + 1) ≤ 𝑗))
579574, 578mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → (𝑘 + 1) ≤ 𝑗)
580286ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ∈ ℝ)
581330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 1 ∈ ℝ)
582283ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑗 ∈ ℝ)
583580, 581, 582leaddsub2d 11577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → ((𝑘 + 1) ≤ 𝑗 ↔ 1 ≤ (𝑗𝑘)))
584579, 583mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 1 ≤ (𝑗𝑘))
585584adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 1 ≤ (𝑗𝑘))
586330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 1 ∈ ℝ)
587395ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (𝑗𝑘) ∈ ℝ)
588352ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 ∈ ℝ+)
589586, 587, 588lemul1d 12814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (1 ≤ (𝑗𝑘) ↔ (1 · 𝑇) ≤ ((𝑗𝑘) · 𝑇)))
590585, 589mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (1 · 𝑇) ≤ ((𝑗𝑘) · 𝑇))
591573, 590eqbrtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
592572, 591syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
593592adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
5945933adantll3 42557 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
595392, 394, 399, 523, 594letrd 11132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑗𝑘) · 𝑇))
596 oveq2 7279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))))
597596oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
598597adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
599267, 445syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓𝐴 ⊆ ℝ)
600599sselda 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
601600adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
602601recnd 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℂ)
603602subidd 11320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) = 0)
604603oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
605604adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
606598, 605eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
6076063adantl2 1166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
608607adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
609374, 373subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗𝑘) ∈ ℂ)
610609, 375mulcld 10996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑗𝑘) · 𝑇) ∈ ℂ)
611610addid2d 11176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
6126113adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
613612ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
614608, 613eqtr2d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑗𝑘) · 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
615595, 614breqtrd 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
616615adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
617391ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ∈ ℝ)
618599sselda 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
619618adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
620601, 619resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
6216203adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
622621ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
623621, 398readdcld 11005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
624623ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
625267adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓𝑘𝑗) → 𝜑)
6266253ad2antl1 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → 𝜑)
627626ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝜑)
628 simpl3 1192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
629628ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
630 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)))
631619ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
632601ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
633631, 632lenltd 11121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))))
634630, 633mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
635 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) ↔ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
636635notbii 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
637636biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
638637adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
639 ioran 981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (¬ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))) ↔ (¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∧ ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))))
640634, 638, 639sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))))
641632, 631leloed 11118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)) ↔ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))))
642640, 641mtbird 325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
6436423adantll2 42556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
644643adantllr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
645619adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
6466453adantl2 1166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
647646ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
648601adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
6496483adantl2 1166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
650649ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
651647, 650ltnled 11122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇))))
652644, 651mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)))
653 simp2l 1198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
654 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐𝐴 ↔ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
655654anbi1d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
656 breq1 5082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐 < (𝑏 + (𝑘 · 𝑇)) ↔ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))))
657655, 6563anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) ↔ (𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)))))
658 oveq2 7279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑏 + (𝑘 · 𝑇)) − 𝑐) = ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
659658breq2d 5091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐) ↔ 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
660657, 659imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)) ↔ ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))))
661 simp2r 1199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)
662 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑑𝐴 ↔ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
663662anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → ((𝑐𝐴𝑑𝐴) ↔ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
664 breq2 5083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑐 < 𝑑𝑐 < (𝑏 + (𝑘 · 𝑇))))
665663, 6643anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇)))))
666 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑑𝑐) = ((𝑏 + (𝑘 · 𝑇)) − 𝑐))
667666breq2d 5091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)))
668665, 667imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐))))
669668, 515vtoclg 3504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)))
670661, 669mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐))
671660, 670vtoclg 3504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
672653, 671mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
673627, 629, 652, 672syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
674395ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → (𝑗𝑘) ∈ ℝ)
675293ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 𝑇 ∈ ℝ)
676 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑘𝑗)
677283ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ)
678286ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ)
679677, 678subge0d 11565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → (0 ≤ (𝑗𝑘) ↔ 𝑘𝑗))
680676, 679mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 0 ≤ (𝑗𝑘))
681680adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ (𝑗𝑘))
682352rpge0d 12775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → 0 ≤ 𝑇)
683682ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ 𝑇)
684674, 675, 681, 683mulge0d 11552 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ ((𝑗𝑘) · 𝑇))
6856843adantl3 1167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → 0 ≤ ((𝑗𝑘) · 𝑇))
686621adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
687398adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
688686, 687addge01d 11563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (0 ≤ ((𝑗𝑘) · 𝑇) ↔ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇))))
689685, 688mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
690689ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
691617, 622, 624, 673, 690letrd 11132 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
692616, 691pm2.61dan 810 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
693372, 378eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
694693oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) + ((𝑗𝑘) · 𝑇)))
695365, 369subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏𝑎) ∈ ℂ)
696373, 374subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘𝑗) ∈ ℂ)
697696, 375mulcld 10996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) ∈ ℂ)
698695, 697, 610addassd 10998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) + ((𝑗𝑘) · 𝑇)) = ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))))
699341, 336, 336, 341subadd4b 42791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑗) + (𝑗𝑘)) = ((𝑘𝑘) + (𝑗𝑗)))
700699adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) + (𝑗𝑘)) = ((𝑘𝑘) + (𝑗𝑗)))
701700oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) + (𝑗𝑘)) · 𝑇) = (((𝑘𝑘) + (𝑗𝑗)) · 𝑇))
702696, 609, 375adddird 11001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) + (𝑗𝑘)) · 𝑇) = (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇)))
703340subidd 11320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ ℤ → (𝑘𝑘) = 0)
704703adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘𝑘) = 0)
705562adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗𝑗) = 0)
706704, 705oveq12d 7289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑘) + (𝑗𝑗)) = (0 + 0))
707 00id 11150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (0 + 0) = 0
708706, 707eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑘) + (𝑗𝑗)) = 0)
709708oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑘𝑘) + (𝑗𝑗)) · 𝑇) = (0 · 𝑇))
710709adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑘) + (𝑗𝑗)) · 𝑇) = (0 · 𝑇))
711701, 702, 7103eqtr3d 2788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇)) = (0 · 𝑇))
712711oveq2d 7287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))) = ((𝑏𝑎) + (0 · 𝑇)))
713318mul02d 11173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (0 · 𝑇) = 0)
714713oveq2d 7287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → ((𝑏𝑎) + (0 · 𝑇)) = ((𝑏𝑎) + 0))
715364, 368subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (𝑏𝑎) ∈ ℂ)
716715addid1d 11175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → ((𝑏𝑎) + 0) = (𝑏𝑎))
717714, 716eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓 → ((𝑏𝑎) + (0 · 𝑇)) = (𝑏𝑎))
718717adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (0 · 𝑇)) = (𝑏𝑎))
719712, 718eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))) = (𝑏𝑎))
720694, 698, 7193eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
7217203adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
722721ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
723692, 722breqtrd 5105 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (𝑏𝑎))
724 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
725 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)))
7266013adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
727726adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7286193adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
729728adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
730727, 729ltnled 11122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ↔ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))))
731725, 730mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
732731adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
7335353adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
734733adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
7356003adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7363023ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑏 ∈ ℝ)
737735, 736resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) ∈ ℝ)
7382933ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑇 ∈ ℝ)
7395313ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑇 ≠ 0)
740737, 738, 739redivcld 11803 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7417403adant3l 1179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓𝑘 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7427413adant2l 1177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
743742adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7446183adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
7453023ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑏 ∈ ℝ)
746744, 745resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) ∈ ℝ)
7472933ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑇 ∈ ℝ)
7485313ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑇 ≠ 0)
749746, 747, 748redivcld 11803 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7507493adant3r 1180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7517503adant2r 1178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
752751adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7532843ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑗 ∈ ℝ)
754753adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑗 ∈ ℝ)
755726adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7563023ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑏 ∈ ℝ)
757756adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑏 ∈ ℝ)
758755, 757resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) ∈ ℝ)
759728adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
760759, 757resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) ∈ ℝ)
7613523ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℝ+)
762761adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑇 ∈ ℝ+)
763601adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
764619adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
765302ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑏 ∈ ℝ)
766 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
767763, 764, 765, 766ltsub1dd 11587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) < ((𝑎 + (𝑗 · 𝑇)) − 𝑏))
7687673adantl2 1166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) < ((𝑎 + (𝑗 · 𝑇)) − 𝑏))
769758, 760, 762, 768ltdiv1dd 12828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) < (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇))
770554, 570eqbrtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
7717703adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
772771adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
773743, 752, 754, 769, 772lttrd 11136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
774734, 773eqbrtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 < 𝑗)
775774adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 < 𝑗)
776732, 775syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝑘 < 𝑗)
777391adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ∈ ℝ)
778393adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ∈ ℝ)
779623adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
780522adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸𝑇)
781 peano2rem 11288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → (𝑗 − 1) ∈ ℝ)
782753, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑗 − 1) ∈ ℝ)
7832873ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘 ∈ ℝ)
784782, 783resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗 − 1) − 𝑘) ∈ ℝ)
785784, 393remulcld 11006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ∈ ℝ)
786785adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑗 − 1) − 𝑘) · 𝑇) ∈ ℝ)
787753adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℝ)
788330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℝ)
789787, 788resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
790286ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
7917903ad2antl2 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
792789, 791resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → ((𝑗 − 1) − 𝑘) ∈ ℝ)
793682adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 < (𝑗 − 1)) → 0 ≤ 𝑇)
7947933ad2antl1 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 0 ≤ 𝑇)
795283ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℝ)
796330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℝ)
797795, 796resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
798 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 < (𝑗 − 1))
799 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℤ)
800 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℤ)
801 1zzd 12351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℤ)
802800, 801zsubcld 12430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℤ)
803 zltlem1 12373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑘 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) → (𝑘 < (𝑗 − 1) ↔ 𝑘 ≤ ((𝑗 − 1) − 1)))
804799, 802, 803syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑘 < (𝑗 − 1) ↔ 𝑘 ≤ ((𝑗 − 1) − 1)))
805798, 804mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ≤ ((𝑗 − 1) − 1))
806790, 797, 796, 805lesubd 11579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ≤ ((𝑗 − 1) − 𝑘))
8078063ad2antl2 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 1 ≤ ((𝑗 − 1) − 𝑘))
808778, 792, 794, 807lemulge12d 11913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ≤ (((𝑗 − 1) − 𝑘) · 𝑇))
809336, 337, 341sub32d 11364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑗 − 1) − 𝑘) = ((𝑗𝑘) − 1))
810809oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) − 1) · 𝑇))
811810adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) − 1) · 𝑇))
812 1cnd 10971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 1 ∈ ℂ)
813609, 812, 375subdird 11432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗𝑘) − 1) · 𝑇) = (((𝑗𝑘) · 𝑇) − (1 · 𝑇)))
814319oveq2d 7287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝜓 → (((𝑗𝑘) · 𝑇) − (1 · 𝑇)) = (((𝑗𝑘) · 𝑇) − 𝑇))
815814adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗𝑘) · 𝑇) − (1 · 𝑇)) = (((𝑗𝑘) · 𝑇) − 𝑇))
816811, 813, 8153eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) · 𝑇) − 𝑇))
8178163adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) · 𝑇) − 𝑇))
818728, 726resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ∈ ℝ)
819269, 271, 276, 274iccsuble 43028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ (𝐶𝐵))
820819, 278breqtrrdi 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ 𝑇)
8218203adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ 𝑇)
822818, 393, 398, 821lesub2dd 11592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − 𝑇) ≤ (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))))
823817, 822eqbrtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))))
8246103adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗𝑘) · 𝑇) ∈ ℂ)
825728recnd 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
8266023adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℂ)
827824, 825, 826subsub2d 11361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))) = (((𝑗𝑘) · 𝑇) + ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
828621recnd 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℂ)
829824, 828addcomd 11177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) + ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
830827, 829eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
831823, 830breqtrd 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
832831adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
833778, 786, 779, 808, 832letrd 11132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
834777, 778, 779, 780, 833letrd 11132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
835721adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
836834, 835breqtrd 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
837836adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
838837adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
839 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
840 simpll2 1212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ))
841 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 < 𝑗)
842 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → ¬ 𝑘 < (𝑗 − 1))
843581, 582, 580, 584lesubd 11579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ≤ (𝑗 − 1))
8448433adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ≤ (𝑗 − 1))
845 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → ¬ 𝑘 < (𝑗 − 1))
846284, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 − 1) ∈ ℝ)
847846adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
848286ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
849847, 848lenltd 11121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → ((𝑗 − 1) ≤ 𝑘 ↔ ¬ 𝑘 < (𝑗 − 1)))
850845, 849mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ≤ 𝑘)
8518503adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ≤ 𝑘)
8525803adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
8538463ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
854852, 853letri3d 11117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑘 = (𝑗 − 1) ↔ (𝑘 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑘)))
855844, 851, 854mpbir2and 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
856840, 841, 842, 855syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
857856adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
858 simpl1 1190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝜓)
859 simpl2l 1225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝑗 ∈ ℤ)
860 simpl3l 1227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
861 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 = (𝑗 − 1) → (𝑘 · 𝑇) = ((𝑗 − 1) · 𝑇))
862861oveq2d 7287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 = (𝑗 − 1) → (𝑏 + (𝑘 · 𝑇)) = (𝑏 + ((𝑗 − 1) · 𝑇)))
863862eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 = (𝑗 − 1) → (𝑏 + ((𝑗 − 1) · 𝑇)) = (𝑏 + (𝑘 · 𝑇)))
864863adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) = (𝑏 + (𝑘 · 𝑇)))
865 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)
866864, 865eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
867866adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
8688673ad2antl3 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
869860, 868jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴))
870 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
8718703adant3r 1180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
872744adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
8732703ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℝ)
874873adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐶 ∈ ℝ)
875268adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐵 ∈ ℝ)
876270adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℝ)
877 elicc2 13143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)))
878875, 876, 877syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)))
879275, 878mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶))
880879simp3d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
8818803adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
882881adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
883 nne 2949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝐶 ≠ (𝑎 + (𝑗 · 𝑇)) ↔ 𝐶 = (𝑎 + (𝑗 · 𝑇)))
884540, 370pncand 11333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = 𝑎)
885884eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑎 = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
886885adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
887 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐶 = (𝑎 + (𝑗 · 𝑇)) → (𝐶 − (𝑗 · 𝑇)) = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
888887eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐶 = (𝑎 + (𝑗 · 𝑇)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = (𝐶 − (𝑗 · 𝑇)))
889888adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = (𝐶 − (𝑗 · 𝑇)))
890278oveq2i 7282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝐵 + 𝑇) = (𝐵 + (𝐶𝐵))
891267, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜓𝐵 ∈ ℂ)
892267, 160syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜓𝐶 ∈ ℂ)
893891, 892pncan3d 11335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝜓 → (𝐵 + (𝐶𝐵)) = 𝐶)
894890, 893eqtr2id 2793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝜓𝐶 = (𝐵 + 𝑇))
895894oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝜓 → (𝐶 − (𝑗 · 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
896895adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐶 − (𝑗 · 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
897891adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → 𝐵 ∈ ℂ)
898897, 370, 547subsub3d 11362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐵 − ((𝑗 · 𝑇) − 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
899550, 547mulsubfacd 11436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → ((𝑗 · 𝑇) − 𝑇) = ((𝑗 − 1) · 𝑇))
900899oveq2d 7287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐵 − ((𝑗 · 𝑇) − 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
901896, 898, 9003eqtr2d 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → (𝐶 − (𝑗 · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
902901adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → (𝐶 − (𝑗 · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
903886, 889, 9023eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
9049033adantl3 1167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
905904adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
906 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
907906eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (𝐵 − ((𝑗 − 1) · 𝑇)) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)))
908907ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → (𝐵 − ((𝑗 − 1) · 𝑇)) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)))
909364ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝑏 ∈ ℂ)
910 1cnd 10971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → 1 ∈ ℂ)
911550, 910subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝑗 − 1) ∈ ℂ)
912911, 547mulcld 10996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → ((𝑗 − 1) · 𝑇) ∈ ℂ)
913912adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑗 − 1) · 𝑇) ∈ ℂ)
914909, 913pncand 11333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
9159143adantl3 1167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
916915adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
917905, 908, 9163eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = 𝑏)
918883, 917sylan2b 594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ ¬ 𝐶 ≠ (𝑎 + (𝑗 · 𝑇))) → 𝑎 = 𝑏)
919309, 358ltned 11111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝜓𝑎𝑏)
920919neneqd 2950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜓 → ¬ 𝑎 = 𝑏)
9219203ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ¬ 𝑎 = 𝑏)
922921ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ ¬ 𝐶 ≠ (𝑎 + (𝑗 · 𝑇))) → ¬ 𝑎 = 𝑏)
923918, 922condan 815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐶 ≠ (𝑎 + (𝑗 · 𝑇)))
924872, 874, 882, 923leneltd 11129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
925871, 924sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
926267ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝜑)
927 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
928926, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐶𝐴)
929 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
930 simp2l 1198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
931654anbi1d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑐𝐴𝐶𝐴) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴)))
932 breq1 5082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐 < 𝐶 ↔ (𝑎 + (𝑗 · 𝑇)) < 𝐶))
933931, 9323anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) ↔ (𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶)))
934 oveq2 7279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐶𝑐) = (𝐶 − (𝑎 + (𝑗 · 𝑇))))
935934breq2d 5091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐸 ≤ (𝐶𝑐) ↔ 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇)))))
936933, 935imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐)) ↔ ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))))
937 simp2r 1199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐶𝐴)
938403anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → ((𝑐𝐴𝑑𝐴) ↔ (𝑐𝐴𝐶𝐴)))
939 breq2 5083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → (𝑐 < 𝑑𝑐 < 𝐶))
940938, 9393anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑑 = 𝐶 → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶)))
941 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → (𝑑𝑐) = (𝐶𝑐))
942941breq2d 5091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑑 = 𝐶 → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ (𝐶𝑐)))
943940, 942imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑑 = 𝐶 → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐))))
944943, 515vtoclg 3504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐶𝐴 → ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐)))
945937, 944mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐))
946936, 945vtoclg 3504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇)))))
947930, 946mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
948926, 927, 928, 929, 947syl121anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
949948adantlrr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
9509493adantl2 1166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
951950adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
952892adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℂ)
953599sselda 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
954953recnd 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
955952, 954npcand 11336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) = 𝐶)
956955eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐶 = ((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))))
957956oveq1d 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
958957adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈