Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem42 Structured version   Visualization version   GIF version

Theorem fourierdlem42 43697
Description: The set of points in a moved partition are finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.)
Hypotheses
Ref Expression
fourierdlem42.b (𝜑𝐵 ∈ ℝ)
fourierdlem42.c (𝜑𝐶 ∈ ℝ)
fourierdlem42.bc (𝜑𝐵 < 𝐶)
fourierdlem42.t 𝑇 = (𝐶𝐵)
fourierdlem42.a (𝜑𝐴 ⊆ (𝐵[,]𝐶))
fourierdlem42.af (𝜑𝐴 ∈ Fin)
fourierdlem42.ba (𝜑𝐵𝐴)
fourierdlem42.ca (𝜑𝐶𝐴)
fourierdlem42.d 𝐷 = (abs ∘ − )
fourierdlem42.i 𝐼 = ((𝐴 × 𝐴) ∖ I )
fourierdlem42.r 𝑅 = ran (𝐷𝐼)
fourierdlem42.e 𝐸 = inf(𝑅, ℝ, < )
fourierdlem42.x (𝜑𝑋 ∈ ℝ)
fourierdlem42.y (𝜑𝑌 ∈ ℝ)
fourierdlem42.j 𝐽 = (topGen‘ran (,))
fourierdlem42.k 𝐾 = (𝐽t (𝑋[,]𝑌))
fourierdlem42.h 𝐻 = {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴}
fourierdlem42.15 (𝜓 ↔ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
Assertion
Ref Expression
fourierdlem42 (𝜑𝐻 ∈ Fin)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑗,𝑘,𝑥   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝐸,𝑎,𝑏,𝑗,𝑘   𝐻,𝑎,𝑏,𝑥   𝑥,𝐼   𝐽,𝑎,𝑏   𝐾,𝑎,𝑏,𝑥   𝑥,𝑅   𝑇,𝑎,𝑏,𝑗,𝑘,𝑥   𝑥,𝑋   𝑥,𝑌   𝜑,𝑎,𝑏,𝑥   𝜓,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑥,𝑎,𝑏)   𝐵(𝑗,𝑘,𝑎,𝑏)   𝐶(𝑗,𝑘,𝑎,𝑏)   𝐷(𝑗,𝑘,𝑎,𝑏)   𝑅(𝑗,𝑘,𝑎,𝑏)   𝐸(𝑥)   𝐻(𝑗,𝑘)   𝐼(𝑗,𝑘,𝑎,𝑏)   𝐽(𝑥,𝑗,𝑘)   𝐾(𝑗,𝑘)   𝑋(𝑗,𝑘,𝑎,𝑏)   𝑌(𝑗,𝑘,𝑎,𝑏)

Proof of Theorem fourierdlem42
Dummy variables 𝑐 𝑑 𝑖 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem42.x . . . . 5 (𝜑𝑋 ∈ ℝ)
2 fourierdlem42.y . . . . 5 (𝜑𝑌 ∈ ℝ)
3 fourierdlem42.j . . . . . 6 𝐽 = (topGen‘ran (,))
4 fourierdlem42.k . . . . . 6 𝐾 = (𝐽t (𝑋[,]𝑌))
53, 4icccmp 23997 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝐾 ∈ Comp)
61, 2, 5syl2anc 584 . . . 4 (𝜑𝐾 ∈ Comp)
76adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → 𝐾 ∈ Comp)
8 fourierdlem42.h . . . . . 6 𝐻 = {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴}
9 ssrab2 4014 . . . . . . 7 {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ⊆ (𝑋[,]𝑌)
109a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ⊆ (𝑋[,]𝑌))
118, 10eqsstrid 3970 . . . . 5 (𝜑𝐻 ⊆ (𝑋[,]𝑌))
12 retop 23934 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
133, 12eqeltri 2836 . . . . . . 7 𝐽 ∈ Top
141, 2iccssred 13175 . . . . . . 7 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
15 uniretop 23935 . . . . . . . . 9 ℝ = (topGen‘ran (,))
163unieqi 4853 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
1715, 16eqtr4i 2770 . . . . . . . 8 ℝ = 𝐽
1817restuni 22322 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋[,]𝑌) ⊆ ℝ) → (𝑋[,]𝑌) = (𝐽t (𝑋[,]𝑌)))
1913, 14, 18sylancr 587 . . . . . 6 (𝜑 → (𝑋[,]𝑌) = (𝐽t (𝑋[,]𝑌)))
204unieqi 4853 . . . . . . 7 𝐾 = (𝐽t (𝑋[,]𝑌))
2120eqcomi 2748 . . . . . 6 (𝐽t (𝑋[,]𝑌)) = 𝐾
2219, 21eqtrdi 2795 . . . . 5 (𝜑 → (𝑋[,]𝑌) = 𝐾)
2311, 22sseqtrd 3962 . . . 4 (𝜑𝐻 𝐾)
2423adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → 𝐻 𝐾)
25 simpr 485 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → ¬ 𝐻 ∈ Fin)
26 eqid 2739 . . . 4 𝐾 = 𝐾
2726bwth 22570 . . 3 ((𝐾 ∈ Comp ∧ 𝐻 𝐾 ∧ ¬ 𝐻 ∈ Fin) → ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
287, 24, 25, 27syl3anc 1370 . 2 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
2911, 14sstrd 3932 . . . . . . . . . 10 (𝜑𝐻 ⊆ ℝ)
3029ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → 𝐻 ⊆ ℝ)
31 ne0i 4269 . . . . . . . . . 10 (𝑥 ∈ ((limPt‘𝐽)‘𝐻) → ((limPt‘𝐽)‘𝐻) ≠ ∅)
3231adantl 482 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → ((limPt‘𝐽)‘𝐻) ≠ ∅)
33 fourierdlem42.e . . . . . . . . . . 11 𝐸 = inf(𝑅, ℝ, < )
34 fourierdlem42.r . . . . . . . . . . . . 13 𝑅 = ran (𝐷𝐼)
35 absf 15058 . . . . . . . . . . . . . . . . . 18 abs:ℂ⟶ℝ
36 ffn 6609 . . . . . . . . . . . . . . . . . 18 (abs:ℂ⟶ℝ → abs Fn ℂ)
3735, 36ax-mp 5 . . . . . . . . . . . . . . . . 17 abs Fn ℂ
38 subf 11232 . . . . . . . . . . . . . . . . . 18 − :(ℂ × ℂ)⟶ℂ
39 ffn 6609 . . . . . . . . . . . . . . . . . 18 ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ))
4038, 39ax-mp 5 . . . . . . . . . . . . . . . . 17 − Fn (ℂ × ℂ)
41 frn 6616 . . . . . . . . . . . . . . . . . 18 ( − :(ℂ × ℂ)⟶ℂ → ran − ⊆ ℂ)
4238, 41ax-mp 5 . . . . . . . . . . . . . . . . 17 ran − ⊆ ℂ
43 fnco 6558 . . . . . . . . . . . . . . . . 17 ((abs Fn ℂ ∧ − Fn (ℂ × ℂ) ∧ ran − ⊆ ℂ) → (abs ∘ − ) Fn (ℂ × ℂ))
4437, 40, 42, 43mp3an 1460 . . . . . . . . . . . . . . . 16 (abs ∘ − ) Fn (ℂ × ℂ)
45 fourierdlem42.d . . . . . . . . . . . . . . . . 17 𝐷 = (abs ∘ − )
4645fneq1i 6539 . . . . . . . . . . . . . . . 16 (𝐷 Fn (ℂ × ℂ) ↔ (abs ∘ − ) Fn (ℂ × ℂ))
4744, 46mpbir 230 . . . . . . . . . . . . . . 15 𝐷 Fn (ℂ × ℂ)
48 fourierdlem42.i . . . . . . . . . . . . . . . 16 𝐼 = ((𝐴 × 𝐴) ∖ I )
49 fourierdlem42.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
50 fourierdlem42.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
51 fourierdlem42.c . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
5250, 51iccssred 13175 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
53 ax-resscn 10937 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
5452, 53sstrdi 3934 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
5549, 54sstrd 3932 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℂ)
56 xpss12 5605 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℂ ∧ 𝐴 ⊆ ℂ) → (𝐴 × 𝐴) ⊆ (ℂ × ℂ))
5755, 55, 56syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 × 𝐴) ⊆ (ℂ × ℂ))
5857ssdifssd 4078 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 × 𝐴) ∖ I ) ⊆ (ℂ × ℂ))
5948, 58eqsstrid 3970 . . . . . . . . . . . . . . 15 (𝜑𝐼 ⊆ (ℂ × ℂ))
60 fnssres 6564 . . . . . . . . . . . . . . 15 ((𝐷 Fn (ℂ × ℂ) ∧ 𝐼 ⊆ (ℂ × ℂ)) → (𝐷𝐼) Fn 𝐼)
6147, 59, 60sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝐼) Fn 𝐼)
62 fvres 6802 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐼 → ((𝐷𝐼)‘𝑥) = (𝐷𝑥))
6362adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) = (𝐷𝑥))
6445fveq1i 6784 . . . . . . . . . . . . . . . . . . 19 (𝐷𝑥) = ((abs ∘ − )‘𝑥)
6564a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → (𝐷𝑥) = ((abs ∘ − )‘𝑥))
66 ffun 6612 . . . . . . . . . . . . . . . . . . . 20 ( − :(ℂ × ℂ)⟶ℂ → Fun − )
6738, 66ax-mp 5 . . . . . . . . . . . . . . . . . . 19 Fun −
6859sselda 3922 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → 𝑥 ∈ (ℂ × ℂ))
6938fdmi 6621 . . . . . . . . . . . . . . . . . . . 20 dom − = (ℂ × ℂ)
7068, 69eleqtrrdi 2851 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → 𝑥 ∈ dom − )
71 fvco 6875 . . . . . . . . . . . . . . . . . . 19 ((Fun − ∧ 𝑥 ∈ dom − ) → ((abs ∘ − )‘𝑥) = (abs‘( − ‘𝑥)))
7267, 70, 71sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ((abs ∘ − )‘𝑥) = (abs‘( − ‘𝑥)))
7363, 65, 723eqtrd 2783 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) = (abs‘( − ‘𝑥)))
7438a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → − :(ℂ × ℂ)⟶ℂ)
7574, 68ffvelrnd 6971 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ( − ‘𝑥) ∈ ℂ)
7675abscld 15157 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → (abs‘( − ‘𝑥)) ∈ ℝ)
7773, 76eqeltrd 2840 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) ∈ ℝ)
78 elxp2 5614 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℂ × ℂ) ↔ ∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩)
7968, 78sylib 217 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → ∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩)
80 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) = ( − ‘⟨𝑦, 𝑧⟩))
81803ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘𝑥) = ( − ‘⟨𝑦, 𝑧⟩))
82 df-ov 7287 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝑧) = ( − ‘⟨𝑦, 𝑧⟩)
83 simp1l 1196 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝜑)
84 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥 = ⟨𝑦, 𝑧⟩)
85 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥𝐼)
8684, 85eqeltrrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
8786adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝐼) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
88873adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
8955adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝐴 ⊆ ℂ)
9048eleq2i 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑦, 𝑧⟩ ∈ 𝐼 ↔ ⟨𝑦, 𝑧⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
91 eldif 3898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑦, 𝑧⟩ ∈ ((𝐴 × 𝐴) ∖ I ) ↔ (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ∧ ¬ ⟨𝑦, 𝑧⟩ ∈ I ))
9290, 91sylbb 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ∧ ¬ ⟨𝑦, 𝑧⟩ ∈ I ))
9392simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴))
94 opelxp 5626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ↔ (𝑦𝐴𝑧𝐴))
9593, 94sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → (𝑦𝐴𝑧𝐴))
9695adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → (𝑦𝐴𝑧𝐴))
9796simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦𝐴)
9889, 97sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦 ∈ ℂ)
9996simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑧𝐴)
10089, 99sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑧 ∈ ℂ)
10192simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ ⟨𝑦, 𝑧⟩ ∈ I )
102 df-br 5076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 I 𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ I )
103101, 102sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ 𝑦 I 𝑧)
104 vex 3437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 ∈ V
105104ideq 5764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 I 𝑧𝑦 = 𝑧)
106103, 105sylnib 328 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ 𝑦 = 𝑧)
107106neqned 2951 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑦, 𝑧⟩ ∈ 𝐼𝑦𝑧)
108107adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦𝑧)
10998, 100, 108subne0d 11350 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → (𝑦𝑧) ≠ 0)
11083, 88, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → (𝑦𝑧) ≠ 0)
11182, 110eqnetrrid 3020 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘⟨𝑦, 𝑧⟩) ≠ 0)
11281, 111eqnetrd 3012 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘𝑥) ≠ 0)
1131123exp 1118 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) ≠ 0)))
114113rexlimdvv 3223 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → (∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) ≠ 0))
11579, 114mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ( − ‘𝑥) ≠ 0)
116 absgt0 15045 . . . . . . . . . . . . . . . . . . 19 (( − ‘𝑥) ∈ ℂ → (( − ‘𝑥) ≠ 0 ↔ 0 < (abs‘( − ‘𝑥))))
11775, 116syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → (( − ‘𝑥) ≠ 0 ↔ 0 < (abs‘( − ‘𝑥))))
118115, 117mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → 0 < (abs‘( − ‘𝑥)))
11973eqcomd 2745 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → (abs‘( − ‘𝑥)) = ((𝐷𝐼)‘𝑥))
120118, 119breqtrd 5101 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 0 < ((𝐷𝐼)‘𝑥))
12177, 120elrpd 12778 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) ∈ ℝ+)
122121ralrimiva 3104 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐼 ((𝐷𝐼)‘𝑥) ∈ ℝ+)
123 fnfvrnss 7003 . . . . . . . . . . . . . 14 (((𝐷𝐼) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝐷𝐼)‘𝑥) ∈ ℝ+) → ran (𝐷𝐼) ⊆ ℝ+)
12461, 122, 123syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ran (𝐷𝐼) ⊆ ℝ+)
12534, 124eqsstrid 3970 . . . . . . . . . . . 12 (𝜑𝑅 ⊆ ℝ+)
126 ltso 11064 . . . . . . . . . . . . . 14 < Or ℝ
127126a1i 11 . . . . . . . . . . . . 13 (𝜑 → < Or ℝ)
128 fourierdlem42.af . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ Fin)
129 xpfi 9094 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ∈ Fin)
130128, 128, 129syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 × 𝐴) ∈ Fin)
131 diffi 8971 . . . . . . . . . . . . . . . . . 18 ((𝐴 × 𝐴) ∈ Fin → ((𝐴 × 𝐴) ∖ I ) ∈ Fin)
132130, 131syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 × 𝐴) ∖ I ) ∈ Fin)
13348, 132eqeltrid 2844 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ Fin)
134 fnfi 8973 . . . . . . . . . . . . . . . 16 (((𝐷𝐼) Fn 𝐼𝐼 ∈ Fin) → (𝐷𝐼) ∈ Fin)
13561, 133, 134syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐼) ∈ Fin)
136 rnfi 9111 . . . . . . . . . . . . . . 15 ((𝐷𝐼) ∈ Fin → ran (𝐷𝐼) ∈ Fin)
137135, 136syl 17 . . . . . . . . . . . . . 14 (𝜑 → ran (𝐷𝐼) ∈ Fin)
13834, 137eqeltrid 2844 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Fin)
13934a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 = ran (𝐷𝐼))
14045a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 = (abs ∘ − ))
141140reseq1d 5893 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷𝐼) = ((abs ∘ − ) ↾ 𝐼))
142141fveq1d 6785 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) = (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩))
143 fourierdlem42.ba . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵𝐴)
144 fourierdlem42.ca . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶𝐴)
145 opelxp 5626 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) ↔ (𝐵𝐴𝐶𝐴))
146143, 144, 145sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴))
147 fourierdlem42.bc . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 < 𝐶)
14850, 147ltned 11120 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵𝐶)
149148neneqd 2949 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 𝐵 = 𝐶)
150 ideqg 5763 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶𝐴 → (𝐵 I 𝐶𝐵 = 𝐶))
151144, 150syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐵 I 𝐶𝐵 = 𝐶))
152149, 151mtbird 325 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ¬ 𝐵 I 𝐶)
153 df-br 5076 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 I 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ I )
154152, 153sylnib 328 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ ⟨𝐵, 𝐶⟩ ∈ I )
155146, 154eldifd 3899 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
156155, 48eleqtrrdi 2851 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ 𝐼)
157 fvres 6802 . . . . . . . . . . . . . . . . . 18 (⟨𝐵, 𝐶⟩ ∈ 𝐼 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩) = ((abs ∘ − )‘⟨𝐵, 𝐶⟩))
158156, 157syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩) = ((abs ∘ − )‘⟨𝐵, 𝐶⟩))
15950recnd 11012 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℂ)
16051recnd 11012 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℂ)
161 opelxp 5626 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝐵, 𝐶⟩ ∈ (ℂ × ℂ) ↔ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
162159, 160, 161sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (ℂ × ℂ))
163162, 69eleqtrrdi 2851 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ dom − )
164 fvco 6875 . . . . . . . . . . . . . . . . . . 19 ((Fun − ∧ ⟨𝐵, 𝐶⟩ ∈ dom − ) → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘( − ‘⟨𝐵, 𝐶⟩)))
16567, 163, 164sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘( − ‘⟨𝐵, 𝐶⟩)))
166 df-ov 7287 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐶) = ( − ‘⟨𝐵, 𝐶⟩)
167166eqcomi 2748 . . . . . . . . . . . . . . . . . . . 20 ( − ‘⟨𝐵, 𝐶⟩) = (𝐵𝐶)
168167a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( − ‘⟨𝐵, 𝐶⟩) = (𝐵𝐶))
169168fveq2d 6787 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘( − ‘⟨𝐵, 𝐶⟩)) = (abs‘(𝐵𝐶)))
170165, 169eqtrd 2779 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘(𝐵𝐶)))
171142, 158, 1703eqtrrd 2784 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(𝐵𝐶)) = ((𝐷𝐼)‘⟨𝐵, 𝐶⟩))
172 fnfvelrn 6967 . . . . . . . . . . . . . . . . 17 (((𝐷𝐼) Fn 𝐼 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐼) → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) ∈ ran (𝐷𝐼))
17361, 156, 172syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) ∈ ran (𝐷𝐼))
174171, 173eqeltrd 2840 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝐵𝐶)) ∈ ran (𝐷𝐼))
175 ne0i 4269 . . . . . . . . . . . . . . 15 ((abs‘(𝐵𝐶)) ∈ ran (𝐷𝐼) → ran (𝐷𝐼) ≠ ∅)
176174, 175syl 17 . . . . . . . . . . . . . 14 (𝜑 → ran (𝐷𝐼) ≠ ∅)
177139, 176eqnetrd 3012 . . . . . . . . . . . . 13 (𝜑𝑅 ≠ ∅)
178 resss 5919 . . . . . . . . . . . . . . . . 17 (𝐷𝐼) ⊆ 𝐷
179 rnss 5851 . . . . . . . . . . . . . . . . 17 ((𝐷𝐼) ⊆ 𝐷 → ran (𝐷𝐼) ⊆ ran 𝐷)
180178, 179ax-mp 5 . . . . . . . . . . . . . . . 16 ran (𝐷𝐼) ⊆ ran 𝐷
18145rneqi 5849 . . . . . . . . . . . . . . . . 17 ran 𝐷 = ran (abs ∘ − )
182 rncoss 5884 . . . . . . . . . . . . . . . . . 18 ran (abs ∘ − ) ⊆ ran abs
183 frn 6616 . . . . . . . . . . . . . . . . . . 19 (abs:ℂ⟶ℝ → ran abs ⊆ ℝ)
18435, 183ax-mp 5 . . . . . . . . . . . . . . . . . 18 ran abs ⊆ ℝ
185182, 184sstri 3931 . . . . . . . . . . . . . . . . 17 ran (abs ∘ − ) ⊆ ℝ
186181, 185eqsstri 3956 . . . . . . . . . . . . . . . 16 ran 𝐷 ⊆ ℝ
187180, 186sstri 3931 . . . . . . . . . . . . . . 15 ran (𝐷𝐼) ⊆ ℝ
18834, 187eqsstri 3956 . . . . . . . . . . . . . 14 𝑅 ⊆ ℝ
189188a1i 11 . . . . . . . . . . . . 13 (𝜑𝑅 ⊆ ℝ)
190 fiinfcl 9269 . . . . . . . . . . . . 13 (( < Or ℝ ∧ (𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝑅 ⊆ ℝ)) → inf(𝑅, ℝ, < ) ∈ 𝑅)
191127, 138, 177, 189, 190syl13anc 1371 . . . . . . . . . . . 12 (𝜑 → inf(𝑅, ℝ, < ) ∈ 𝑅)
192125, 191sseldd 3923 . . . . . . . . . . 11 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ+)
19333, 192eqeltrid 2844 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ+)
194193ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → 𝐸 ∈ ℝ+)
1953, 30, 32, 194lptre2pt 43188 . . . . . . . 8 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
196 simpll 764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝜑)
19729sselda 3922 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐻) → 𝑦 ∈ ℝ)
198197adantrr 714 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → 𝑦 ∈ ℝ)
199198adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
20029sselda 3922 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐻) → 𝑧 ∈ ℝ)
201200adantrl 713 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → 𝑧 ∈ ℝ)
202201adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑧 ∈ ℝ)
203 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑦𝑧)
204199, 202, 2033jca 1127 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧))
2058eleq2i 2831 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐻𝑦 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴})
206 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝑥 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
207206eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
208207rexbidv 3227 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
209 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
210209oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
211210eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
212211cbvrexvw 3385 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
213208, 212bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
214213elrab 3625 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ↔ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
215205, 214sylbb 218 . . . . . . . . . . . . . . . . . 18 (𝑦𝐻 → (𝑦 ∈ (𝑋[,]𝑌) ∧ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
216215simprd 496 . . . . . . . . . . . . . . . . 17 (𝑦𝐻 → ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
217216adantr 481 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑧𝐻) → ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
2188eleq2i 2831 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐻𝑧 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴})
219 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (𝑥 + (𝑘 · 𝑇)) = (𝑧 + (𝑘 · 𝑇)))
220219eleq1d 2824 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
221220rexbidv 3227 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
222221elrab 3625 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ↔ (𝑧 ∈ (𝑋[,]𝑌) ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
223218, 222sylbb 218 . . . . . . . . . . . . . . . . . 18 (𝑧𝐻 → (𝑧 ∈ (𝑋[,]𝑌) ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
224223simprd 496 . . . . . . . . . . . . . . . . 17 (𝑧𝐻 → ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)
225224adantl 482 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑧𝐻) → ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)
226 reeanv 3295 . . . . . . . . . . . . . . . 16 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ (∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
227217, 225, 226sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝑦𝐻𝑧𝐻) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
228227ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
229 simplll 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → 𝜑)
230 simpl1 1190 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑦 ∈ ℝ)
231 simpl2 1191 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑧 ∈ ℝ)
232 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑦 < 𝑧)
233230, 231, 2323jca 1127 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
234233adantll 711 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
235234adantlr 712 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
236 simplr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
237 eleq1 2827 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → (𝑏 ∈ ℝ ↔ 𝑧 ∈ ℝ))
238 breq2 5079 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → (𝑦 < 𝑏𝑦 < 𝑧))
239237, 2383anbi23d 1438 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → ((𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏) ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)))
240239anbi2d 629 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ↔ (𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))))
241 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (𝑏 + (𝑘 · 𝑇)) = (𝑧 + (𝑘 · 𝑇)))
242241eleq1d 2824 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → ((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
243242anbi2d 629 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → (((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)))
2442432rexbidv 3230 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)))
245240, 244anbi12d 631 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))))
246 oveq2 7292 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → (𝑦𝑏) = (𝑦𝑧))
247246fveq2d 6787 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → (abs‘(𝑦𝑏)) = (abs‘(𝑦𝑧)))
248247breq2d 5087 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (𝐸 ≤ (abs‘(𝑦𝑏)) ↔ 𝐸 ≤ (abs‘(𝑦𝑧))))
249245, 248imbi12d 345 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑧 → ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑏))) ↔ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑧)))))
250 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → (𝑎 ∈ ℝ ↔ 𝑦 ∈ ℝ))
251 breq1 5078 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → (𝑎 < 𝑏𝑦 < 𝑏))
252250, 2513anbi13d 1437 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ↔ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)))
253252anbi2d 629 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ↔ (𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏))))
254 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑦 → (𝑎 + (𝑗 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
255254eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
256255anbi1d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → (((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
2572562rexbidv 3230 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
258253, 257anbi12d 631 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑦 → (((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))))
259 oveq1 7291 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → (𝑎𝑏) = (𝑦𝑏))
260259fveq2d 6787 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → (abs‘(𝑎𝑏)) = (abs‘(𝑦𝑏)))
261260breq2d 5087 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑦 → (𝐸 ≤ (abs‘(𝑎𝑏)) ↔ 𝐸 ≤ (abs‘(𝑦𝑏))))
262258, 261imbi12d 345 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → ((((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏))) ↔ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑏)))))
263 fourierdlem42.15 . . . . . . . . . . . . . . . . . . 19 (𝜓 ↔ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
264263simprbi 497 . . . . . . . . . . . . . . . . . . . 20 (𝜓 → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
265263biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
266265simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → (𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)))
267266simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝜑)
268267, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝐵 ∈ ℝ)
269268adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℝ)
270267, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝐶 ∈ ℝ)
271270adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐶 ∈ ℝ)
272267, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝐴 ⊆ (𝐵[,]𝐶))
273272sselda 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ (𝐵[,]𝐶))
274273adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ (𝐵[,]𝐶))
275272sselda 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶))
276275adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶))
277269, 271, 274, 276iccsuble 43064 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (𝐶𝐵))
278 fourierdlem42.t . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑇 = (𝐶𝐵)
279277, 278breqtrrdi 5117 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
2802793adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
281280adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
282 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → ¬ 𝑘𝑗)
283 zre 12332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
284283adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑗 ∈ ℝ)
285284ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑗 ∈ ℝ)
286 zre 12332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
287286adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
288287ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑘 ∈ ℝ)
289285, 288ltnled 11131 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → (𝑗 < 𝑘 ↔ ¬ 𝑘𝑗))
290282, 289mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑗 < 𝑘)
29151, 50resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝐶𝐵) ∈ ℝ)
292278, 291eqeltrid 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑇 ∈ ℝ)
293267, 292syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝑇 ∈ ℝ)
294293ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ∈ ℝ)
295287adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℝ)
296284adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℝ)
297295, 296resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘𝑗) ∈ ℝ)
298293adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑇 ∈ ℝ)
299297, 298remulcld 11014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) ∈ ℝ)
300299adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑘𝑗) · 𝑇) ∈ ℝ)
301266simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏))
302301simp2d 1142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑏 ∈ ℝ)
303302adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑏 ∈ ℝ)
304286adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
305293adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
306304, 305remulcld 11014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
307306adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑇) ∈ ℝ)
308303, 307readdcld 11013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
309301simp1d 1141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑎 ∈ ℝ)
310309adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑎 ∈ ℝ)
311283adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
312293adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → 𝑇 ∈ ℝ)
313311, 312remulcld 11014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ) → (𝑗 · 𝑇) ∈ ℝ)
314313adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 · 𝑇) ∈ ℝ)
315310, 314readdcld 11013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
316308, 315resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
317316adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
318293recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑇 ∈ ℂ)
319318mulid2d 11002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → (1 · 𝑇) = 𝑇)
320319eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝑇 = (1 · 𝑇))
321320ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 = (1 · 𝑇))
322 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑗 < 𝑘)
323 zltlem1 12382 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 < 𝑘𝑗 ≤ (𝑘 − 1)))
324323ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑗 < 𝑘𝑗 ≤ (𝑘 − 1)))
325322, 324mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑗 ≤ (𝑘 − 1))
326284ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 𝑗 ∈ ℝ)
327 peano2rem 11297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ℝ → (𝑘 − 1) ∈ ℝ)
328295, 327syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 − 1) ∈ ℝ)
329328adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑘 − 1) ∈ ℝ)
330 1re 10984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1 ∈ ℝ
331 resubcl 11294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((1 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (1 − 𝑗) ∈ ℝ)
332330, 326, 331sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (1 − 𝑗) ∈ ℝ)
333 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 𝑗 ≤ (𝑘 − 1))
334326, 329, 332, 333leadd1dd 11598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑗 + (1 − 𝑗)) ≤ ((𝑘 − 1) + (1 − 𝑗)))
335 zcn 12333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
336335adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑗 ∈ ℂ)
337 1cnd 10979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 1 ∈ ℂ)
338336, 337pncan3d 11344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 + (1 − 𝑗)) = 1)
339338ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑗 + (1 − 𝑗)) = 1)
340 zcn 12333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
341340adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
342341, 337, 336npncand 11365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 − 1) + (1 − 𝑗)) = (𝑘𝑗))
343342ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → ((𝑘 − 1) + (1 − 𝑗)) = (𝑘𝑗))
344334, 339, 3433brtr3d 5106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 1 ≤ (𝑘𝑗))
345325, 344syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 1 ≤ (𝑘𝑗))
346330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 1 ∈ ℝ)
347297adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑘𝑗) ∈ ℝ)
34850, 51posdifd 11571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝐵 < 𝐶 ↔ 0 < (𝐶𝐵)))
349147, 348mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → 0 < (𝐶𝐵))
350349, 278breqtrrdi 5117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → 0 < 𝑇)
351292, 350elrpd 12778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝑇 ∈ ℝ+)
352267, 351syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑇 ∈ ℝ+)
353352ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ∈ ℝ+)
354346, 347, 353lemul1d 12824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (1 ≤ (𝑘𝑗) ↔ (1 · 𝑇) ≤ ((𝑘𝑗) · 𝑇)))
355345, 354mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (1 · 𝑇) ≤ ((𝑘𝑗) · 𝑇))
356321, 355eqbrtrd 5097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ≤ ((𝑘𝑗) · 𝑇))
357302, 309resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → (𝑏𝑎) ∈ ℝ)
358301simp3d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜓𝑎 < 𝑏)
359309, 302posdifd 11571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜓 → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
360358, 359mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → 0 < (𝑏𝑎))
361357, 360elrpd 12778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (𝑏𝑎) ∈ ℝ+)
362361adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏𝑎) ∈ ℝ+)
363299, 362ltaddrp2d 12815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) < ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
364302recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓𝑏 ∈ ℂ)
365364adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑏 ∈ ℂ)
366306recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℂ)
367366adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑇) ∈ ℂ)
368309recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓𝑎 ∈ ℂ)
369368adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑎 ∈ ℂ)
370313recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → (𝑗 · 𝑇) ∈ ℂ)
371370adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 · 𝑇) ∈ ℂ)
372365, 367, 369, 371addsub4d 11388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘 · 𝑇) − (𝑗 · 𝑇))))
373340ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
374335ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℂ)
375318adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑇 ∈ ℂ)
376373, 374, 375subdird 11441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) = ((𝑘 · 𝑇) − (𝑗 · 𝑇)))
377376eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑇) − (𝑗 · 𝑇)) = ((𝑘𝑗) · 𝑇))
378377oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + ((𝑘 · 𝑇) − (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
379372, 378eqtr2d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) = ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
380363, 379breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
381380adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑘𝑗) · 𝑇) < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
382294, 300, 317, 356, 381lelttrd 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
383294, 317ltnled 11131 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑇 < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ↔ ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇))
384382, 383mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
385290, 384syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
3863853adantl3 1167 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑘𝑗) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
387281, 386condan 815 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘𝑗)
388188, 191sselid 3920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
38933, 388eqeltrid 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐸 ∈ ℝ)
390267, 389syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓𝐸 ∈ ℝ)
3913903ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ∈ ℝ)
392391ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ∈ ℝ)
3932933ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℝ)
394393ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ∈ ℝ)
395284, 287resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗𝑘) ∈ ℝ)
396395adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗𝑘) ∈ ℝ)
397396, 298remulcld 11014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
3983973adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
399398ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
400 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝜑)
401143, 144jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝐵𝐴𝐶𝐴))
402400, 401, 1473jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶))
403 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑑 = 𝐶 → (𝑑𝐴𝐶𝐴))
404403anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → ((𝐵𝐴𝑑𝐴) ↔ (𝐵𝐴𝐶𝐴)))
405 breq2 5079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → (𝐵 < 𝑑𝐵 < 𝐶))
406404, 4053anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = 𝐶 → ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) ↔ (𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶)))
407 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → (𝑑𝐵) = (𝐶𝐵))
408407breq2d 5087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = 𝐶 → (𝐸 ≤ (𝑑𝐵) ↔ 𝐸 ≤ (𝐶𝐵)))
409406, 408imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑑 = 𝐶 → (((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵)) ↔ ((𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶) → 𝐸 ≤ (𝐶𝐵))))
410 simp2l 1198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐵𝐴)
411 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = 𝐵 → (𝑐𝐴𝐵𝐴))
412411anbi1d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → ((𝑐𝐴𝑑𝐴) ↔ (𝐵𝐴𝑑𝐴)))
413 breq1 5078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → (𝑐 < 𝑑𝐵 < 𝑑))
414412, 4133anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = 𝐵 → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑)))
415 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → (𝑑𝑐) = (𝑑𝐵))
416415breq2d 5087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = 𝐵 → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ (𝑑𝐵)))
417414, 416imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑐 = 𝐵 → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵))))
418188a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑅 ⊆ ℝ)
419 0re 10986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 0 ∈ ℝ
42034eleq2i 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑦𝑅𝑦 ∈ ran (𝐷𝐼))
421420biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦𝑅𝑦 ∈ ran (𝐷𝐼))
422421adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → 𝑦 ∈ ran (𝐷𝐼))
42361adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑𝑦𝑅) → (𝐷𝐼) Fn 𝐼)
424 fvelrnb 6839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐷𝐼) Fn 𝐼 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
425423, 424syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
426422, 425mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑦𝑅) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦)
427121rpge0d 12785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑𝑥𝐼) → 0 ≤ ((𝐷𝐼)‘𝑥))
4284273adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → 0 ≤ ((𝐷𝐼)‘𝑥))
429 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → ((𝐷𝐼)‘𝑥) = 𝑦)
430428, 429breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → 0 ≤ 𝑦)
4314303exp 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜑 → (𝑥𝐼 → (((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦)))
432431adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → (𝑥𝐼 → (((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦)))
433432rexlimdv 3213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑦𝑅) → (∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦))
434426, 433mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑𝑦𝑅) → 0 ≤ 𝑦)
435434ralrimiva 3104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝜑 → ∀𝑦𝑅 0 ≤ 𝑦)
436 breq1 5078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
437436ralbidv 3113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥 = 0 → (∀𝑦𝑅 𝑥𝑦 ↔ ∀𝑦𝑅 0 ≤ 𝑦))
438437rspcev 3562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((0 ∈ ℝ ∧ ∀𝑦𝑅 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
439419, 435, 438sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
4404393ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
441 pm3.22 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑐𝐴𝑑𝐴) → (𝑑𝐴𝑐𝐴))
442 opelxp 5626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴) ↔ (𝑑𝐴𝑐𝐴))
443441, 442sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑐𝐴𝑑𝐴) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
4444433ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
44549, 52sstrd 3932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝜑𝐴 ⊆ ℝ)
446445sselda 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑𝑐𝐴) → 𝑐 ∈ ℝ)
447446adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → 𝑐 ∈ ℝ)
4484473adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐 ∈ ℝ)
449 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐 < 𝑑)
450448, 449gtned 11119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑑𝑐)
451450neneqd 2949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ¬ 𝑑 = 𝑐)
452 df-br 5076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑑 I 𝑐 ↔ ⟨𝑑, 𝑐⟩ ∈ I )
453 vex 3437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑐 ∈ V
454453ideq 5764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑑 I 𝑐𝑑 = 𝑐)
455452, 454bitr3i 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (⟨𝑑, 𝑐⟩ ∈ I ↔ 𝑑 = 𝑐)
456451, 455sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ¬ ⟨𝑑, 𝑐⟩ ∈ I )
457444, 456eldifd 3899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
458457, 48eleqtrrdi 2851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ 𝐼)
459448, 449ltned 11120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐𝑑)
4601413ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (𝐷𝐼) = ((abs ∘ − ) ↾ 𝐼))
461460fveq1d 6785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩))
4624433ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
463 necom 2998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑐𝑑𝑑𝑐)
464463biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝑐𝑑𝑑𝑐)
465464neneqd 2949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑐𝑑 → ¬ 𝑑 = 𝑐)
4664653ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ¬ 𝑑 = 𝑐)
467466, 455sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ¬ ⟨𝑑, 𝑐⟩ ∈ I )
468462, 467eldifd 3899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
469468, 48eleqtrrdi 2851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ 𝐼)
470 fvres 6802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (⟨𝑑, 𝑐⟩ ∈ 𝐼 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩) = ((abs ∘ − )‘⟨𝑑, 𝑐⟩))
471469, 470syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩) = ((abs ∘ − )‘⟨𝑑, 𝑐⟩))
472 simp1 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → 𝜑)
473472, 469jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼))
474 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝑥 = ⟨𝑑, 𝑐⟩ → (𝑥𝐼 ↔ ⟨𝑑, 𝑐⟩ ∈ 𝐼))
475474anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = ⟨𝑑, 𝑐⟩ → ((𝜑𝑥𝐼) ↔ (𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼)))
476 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = ⟨𝑑, 𝑐⟩ → (𝑥 ∈ dom − ↔ ⟨𝑑, 𝑐⟩ ∈ dom − ))
477475, 476imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑥 = ⟨𝑑, 𝑐⟩ → (((𝜑𝑥𝐼) → 𝑥 ∈ dom − ) ↔ ((𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼) → ⟨𝑑, 𝑐⟩ ∈ dom − )))
478477, 70vtoclg 3506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (⟨𝑑, 𝑐⟩ ∈ 𝐼 → ((𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼) → ⟨𝑑, 𝑐⟩ ∈ dom − ))
479469, 473, 478sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ dom − )
480 fvco 6875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((Fun − ∧ ⟨𝑑, 𝑐⟩ ∈ dom − ) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘( − ‘⟨𝑑, 𝑐⟩)))
48167, 479, 480sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘( − ‘⟨𝑑, 𝑐⟩)))
482 df-ov 7287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑑𝑐) = ( − ‘⟨𝑑, 𝑐⟩)
483482eqcomi 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ( − ‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)
484483fveq2i 6786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (abs‘( − ‘⟨𝑑, 𝑐⟩)) = (abs‘(𝑑𝑐))
485481, 484eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
486461, 471, 4853eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
487459, 486syld3an3 1408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
488445sselda 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑𝑑𝐴) → 𝑑 ∈ ℝ)
489488adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → 𝑑 ∈ ℝ)
4904893adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑑 ∈ ℝ)
491448, 490, 449ltled 11132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐𝑑)
492448, 490, 491abssubge0d 15152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (abs‘(𝑑𝑐)) = (𝑑𝑐))
493487, 492eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐))
494 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑥 = ⟨𝑑, 𝑐⟩ → ((𝐷𝐼)‘𝑥) = ((𝐷𝐼)‘⟨𝑑, 𝑐⟩))
495494eqeq1d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = ⟨𝑑, 𝑐⟩ → (((𝐷𝐼)‘𝑥) = (𝑑𝑐) ↔ ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)))
496495rspcev 3562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((⟨𝑑, 𝑐⟩ ∈ 𝐼 ∧ ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))
497458, 493, 496syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))
498489, 447resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑑𝑐) ∈ ℝ)
499 elex 3451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑑𝑐) ∈ ℝ → (𝑑𝑐) ∈ V)
500498, 499syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑑𝑐) ∈ V)
5015003adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ V)
502 simp1 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝜑)
503 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦 = (𝑑𝑐) → (𝑦 ∈ ran (𝐷𝐼) ↔ (𝑑𝑐) ∈ ran (𝐷𝐼)))
504 eqeq2 2751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑦 = (𝑑𝑐) → (((𝐷𝐼)‘𝑥) = 𝑦 ↔ ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
505504rexbidv 3227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦 = (𝑑𝑐) → (∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦 ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
506503, 505bibi12d 346 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑦 = (𝑑𝑐) → ((𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦) ↔ ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))))
507506imbi2d 341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑦 = (𝑑𝑐) → ((𝜑 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦)) ↔ (𝜑 → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))))
50861, 424syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝜑 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
509507, 508vtoclg 3506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑑𝑐) ∈ V → (𝜑 → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))))
510501, 502, 509sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
511497, 510mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ ran (𝐷𝐼))
512511, 34eleqtrrdi 2851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ 𝑅)
513 infrelb 11969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦 ∧ (𝑑𝑐) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑑𝑐))
514418, 440, 512, 513syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → inf(𝑅, ℝ, < ) ≤ (𝑑𝑐))
51533, 514eqbrtrid 5110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐))
516417, 515vtoclg 3506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐵𝐴 → ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵)))
517410, 516mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵))
518409, 517vtoclg 3506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐶𝐴 → ((𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶) → 𝐸 ≤ (𝐶𝐵)))
519144, 402, 518sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐸 ≤ (𝐶𝐵))
520519, 278breqtrrdi 5117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐸𝑇)
521267, 520syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓𝐸𝑇)
5225213ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸𝑇)
523522ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸𝑇)
524364adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑘 ∈ ℤ) → 𝑏 ∈ ℂ)
525524, 366pncan2d 11343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) = (𝑘 · 𝑇))
526525oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑘 ∈ ℤ) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) = ((𝑘 · 𝑇) / 𝑇))
527340adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
528318adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑇 ∈ ℂ)
529419a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝜑 → 0 ∈ ℝ)
530529, 350gtned 11119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑𝑇 ≠ 0)
531267, 530syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓𝑇 ≠ 0)
532531adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑇 ≠ 0)
533527, 528, 532divcan4d 11766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑘 ∈ ℤ) → ((𝑘 · 𝑇) / 𝑇) = 𝑘)
534526, 533eqtr2d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑘 ∈ ℤ) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
535534adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
536535adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
537 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑏 + (𝑘 · 𝑇)) − 𝑏))
538537oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
539538adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
540368adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑎 ∈ ℂ)
541364adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑏 ∈ ℂ)
542540, 370, 541addsubd 11362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑎𝑏) + (𝑗 · 𝑇)))
543540, 541subcld 11341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → (𝑎𝑏) ∈ ℂ)
544543, 370addcomd 11186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) + (𝑗 · 𝑇)) = ((𝑗 · 𝑇) + (𝑎𝑏)))
545542, 544eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑗 · 𝑇) + (𝑎𝑏)))
546545oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑗 · 𝑇) + (𝑎𝑏)) / 𝑇))
547318adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → 𝑇 ∈ ℂ)
548531adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → 𝑇 ≠ 0)
549370, 543, 547, 548divdird 11798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑗 · 𝑇) + (𝑎𝑏)) / 𝑇) = (((𝑗 · 𝑇) / 𝑇) + ((𝑎𝑏) / 𝑇)))
550335adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → 𝑗 ∈ ℂ)
551550, 547, 548divcan4d 11766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → ((𝑗 · 𝑇) / 𝑇) = 𝑗)
552551oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑗 · 𝑇) / 𝑇) + ((𝑎𝑏) / 𝑇)) = (𝑗 + ((𝑎𝑏) / 𝑇)))
553546, 549, 5523eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
554553adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
555554adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
556536, 539, 5553eqtr2d 2785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 = (𝑗 + ((𝑎𝑏) / 𝑇)))
557309, 302resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓 → (𝑎𝑏) ∈ ℝ)
558309, 302sublt0d 11610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜓 → ((𝑎𝑏) < 0 ↔ 𝑎 < 𝑏))
559358, 558mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓 → (𝑎𝑏) < 0)
560557, 352, 559divlt0gt0d 42832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓 → ((𝑎𝑏) / 𝑇) < 0)
561560adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) < 0)
562335subidd 11329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑗 ∈ ℤ → (𝑗𝑗) = 0)
563562eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑗 ∈ ℤ → 0 = (𝑗𝑗))
564563adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → 0 = (𝑗𝑗))
565561, 564breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) < (𝑗𝑗))
566557, 293, 531redivcld 11812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓 → ((𝑎𝑏) / 𝑇) ∈ ℝ)
567566adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) ∈ ℝ)
568311, 567, 311ltaddsub2d 11585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → ((𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗 ↔ ((𝑎𝑏) / 𝑇) < (𝑗𝑗)))
569565, 568mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓𝑗 ∈ ℤ) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
570569adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
571570adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
572556, 571eqbrtrd 5097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 < 𝑗)
573320ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 = (1 · 𝑇))
574 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 < 𝑗)
575 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ∈ ℤ)
576 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑗 ∈ ℤ)
577 zltp1le 12379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑘 < 𝑗 ↔ (𝑘 + 1) ≤ 𝑗))
578575, 576, 577syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → (𝑘 < 𝑗 ↔ (𝑘 + 1) ≤ 𝑗))
579574, 578mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → (𝑘 + 1) ≤ 𝑗)
580286ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ∈ ℝ)
581330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 1 ∈ ℝ)
582283ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑗 ∈ ℝ)
583580, 581, 582leaddsub2d 11586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → ((𝑘 + 1) ≤ 𝑗 ↔ 1 ≤ (𝑗𝑘)))
584579, 583mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 1 ≤ (𝑗𝑘))
585584adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 1 ≤ (𝑗𝑘))
586330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 1 ∈ ℝ)
587395ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (𝑗𝑘) ∈ ℝ)
588352ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 ∈ ℝ+)
589586, 587, 588lemul1d 12824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (1 ≤ (𝑗𝑘) ↔ (1 · 𝑇) ≤ ((𝑗𝑘) · 𝑇)))
590585, 589mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (1 · 𝑇) ≤ ((𝑗𝑘) · 𝑇))
591573, 590eqbrtrd 5097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
592572, 591syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
593592adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
5945933adantll3 42594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
595392, 394, 399, 523, 594letrd 11141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑗𝑘) · 𝑇))
596 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))))
597596oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
598597adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
599267, 445syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓𝐴 ⊆ ℝ)
600599sselda 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
601600adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
602601recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℂ)
603602subidd 11329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) = 0)
604603oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
605604adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
606598, 605eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
6076063adantl2 1166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
608607adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
609374, 373subcld 11341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗𝑘) ∈ ℂ)
610609, 375mulcld 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑗𝑘) · 𝑇) ∈ ℂ)
611610addid2d 11185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
6126113adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
613612ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
614608, 613eqtr2d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑗𝑘) · 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
615595, 614breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
616615adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
617391ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ∈ ℝ)
618599sselda 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
619618adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
620601, 619resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
6216203adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
622621ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
623621, 398readdcld 11013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
624623ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
625267adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓𝑘𝑗) → 𝜑)
6266253ad2antl1 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → 𝜑)
627626ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝜑)
628 simpl3 1192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
629628ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
630 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)))
631619ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
632601ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
633631, 632lenltd 11130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))))
634630, 633mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
635 eqcom 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) ↔ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
636635notbii 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
637636biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
638637adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
639 ioran 981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (¬ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))) ↔ (¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∧ ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))))
640634, 638, 639sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))))
641632, 631leloed 11127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)) ↔ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))))
642640, 641mtbird 325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
6436423adantll2 42593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
644643adantllr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
645619adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
6466453adantl2 1166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
647646ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
648601adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
6496483adantl2 1166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
650649ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
651647, 650ltnled 11131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇))))
652644, 651mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)))
653 simp2l 1198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
654 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐𝐴 ↔ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
655654anbi1d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
656 breq1 5078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐 < (𝑏 + (𝑘 · 𝑇)) ↔ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))))
657655, 6563anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) ↔ (𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)))))
658 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑏 + (𝑘 · 𝑇)) − 𝑐) = ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
659658breq2d 5087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐) ↔ 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
660657, 659imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)) ↔ ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))))
661 simp2r 1199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)
662 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑑𝐴 ↔ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
663662anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → ((𝑐𝐴𝑑𝐴) ↔ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
664 breq2 5079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑐 < 𝑑𝑐 < (𝑏 + (𝑘 · 𝑇))))
665663, 6643anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇)))))
666 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑑𝑐) = ((𝑏 + (𝑘 · 𝑇)) − 𝑐))
667666breq2d 5087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)))
668665, 667imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐))))
669668, 515vtoclg 3506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)))
670661, 669mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐))
671660, 670vtoclg 3506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
672653, 671mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
673627, 629, 652, 672syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
674395ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → (𝑗𝑘) ∈ ℝ)
675293ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 𝑇 ∈ ℝ)
676 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑘𝑗)
677283ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ)
678286ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ)
679677, 678subge0d 11574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → (0 ≤ (𝑗𝑘) ↔ 𝑘𝑗))
680676, 679mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 0 ≤ (𝑗𝑘))
681680adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ (𝑗𝑘))
682352rpge0d 12785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → 0 ≤ 𝑇)
683682ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ 𝑇)
684674, 675, 681, 683mulge0d 11561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ ((𝑗𝑘) · 𝑇))
6856843adantl3 1167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → 0 ≤ ((𝑗𝑘) · 𝑇))
686621adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
687398adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
688686, 687addge01d 11572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (0 ≤ ((𝑗𝑘) · 𝑇) ↔ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇))))
689685, 688mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
690689ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
691617, 622, 624, 673, 690letrd 11141 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
692616, 691pm2.61dan 810 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
693372, 378eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
694693oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) + ((𝑗𝑘) · 𝑇)))
695365, 369subcld 11341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏𝑎) ∈ ℂ)
696373, 374subcld 11341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘𝑗) ∈ ℂ)
697696, 375mulcld 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) ∈ ℂ)
698695, 697, 610addassd 11006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) + ((𝑗𝑘) · 𝑇)) = ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))))
699341, 336, 336, 341subadd4b 42828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑗) + (𝑗𝑘)) = ((𝑘𝑘) + (𝑗𝑗)))
700699adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) + (𝑗𝑘)) = ((𝑘𝑘) + (𝑗𝑗)))
701700oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) + (𝑗𝑘)) · 𝑇) = (((𝑘𝑘) + (𝑗𝑗)) · 𝑇))
702696, 609, 375adddird 11009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) + (𝑗𝑘)) · 𝑇) = (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇)))
703340subidd 11329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ ℤ → (𝑘𝑘) = 0)
704703adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘𝑘) = 0)
705562adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗𝑗) = 0)
706704, 705oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑘) + (𝑗𝑗)) = (0 + 0))
707 00id 11159 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (0 + 0) = 0
708706, 707eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑘) + (𝑗𝑗)) = 0)
709708oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑘𝑘) + (𝑗𝑗)) · 𝑇) = (0 · 𝑇))
710709adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑘) + (𝑗𝑗)) · 𝑇) = (0 · 𝑇))
711701, 702, 7103eqtr3d 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇)) = (0 · 𝑇))
712711oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))) = ((𝑏𝑎) + (0 · 𝑇)))
713318mul02d 11182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (0 · 𝑇) = 0)
714713oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → ((𝑏𝑎) + (0 · 𝑇)) = ((𝑏𝑎) + 0))
715364, 368subcld 11341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (𝑏𝑎) ∈ ℂ)
716715addid1d 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → ((𝑏𝑎) + 0) = (𝑏𝑎))
717714, 716eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓 → ((𝑏𝑎) + (0 · 𝑇)) = (𝑏𝑎))
718717adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (0 · 𝑇)) = (𝑏𝑎))
719712, 718eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))) = (𝑏𝑎))
720694, 698, 7193eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
7217203adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
722721ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
723692, 722breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (𝑏𝑎))
724 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
725 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)))
7266013adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
727726adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7286193adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
729728adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
730727, 729ltnled 11131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ↔ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))))
731725, 730mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
732731adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
7335353adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
734733adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
7356003adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7363023ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑏 ∈ ℝ)
737735, 736resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) ∈ ℝ)
7382933ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑇 ∈ ℝ)
7395313ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑇 ≠ 0)
740737, 738, 739redivcld 11812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7417403adant3l 1179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓𝑘 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7427413adant2l 1177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
743742adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7446183adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
7453023ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑏 ∈ ℝ)
746744, 745resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) ∈ ℝ)
7472933ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑇 ∈ ℝ)
7485313ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑇 ≠ 0)
749746, 747, 748redivcld 11812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7507493adant3r 1180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7517503adant2r 1178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
752751adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7532843ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑗 ∈ ℝ)
754753adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑗 ∈ ℝ)
755726adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7563023ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑏 ∈ ℝ)
757756adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑏 ∈ ℝ)
758755, 757resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) ∈ ℝ)
759728adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
760759, 757resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) ∈ ℝ)
7613523ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℝ+)
762761adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑇 ∈ ℝ+)
763601adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
764619adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
765302ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑏 ∈ ℝ)
766 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
767763, 764, 765, 766ltsub1dd 11596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) < ((𝑎 + (𝑗 · 𝑇)) − 𝑏))
7687673adantl2 1166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) < ((𝑎 + (𝑗 · 𝑇)) − 𝑏))
769758, 760, 762, 768ltdiv1dd 12838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) < (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇))
770554, 570eqbrtrd 5097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
7717703adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
772771adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
773743, 752, 754, 769, 772lttrd 11145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
774734, 773eqbrtrd 5097 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 < 𝑗)
775774adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 < 𝑗)
776732, 775syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝑘 < 𝑗)
777391adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ∈ ℝ)
778393adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ∈ ℝ)
779623adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
780522adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸𝑇)
781 peano2rem 11297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → (𝑗 − 1) ∈ ℝ)
782753, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑗 − 1) ∈ ℝ)
7832873ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘 ∈ ℝ)
784782, 783resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗 − 1) − 𝑘) ∈ ℝ)
785784, 393remulcld 11014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ∈ ℝ)
786785adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑗 − 1) − 𝑘) · 𝑇) ∈ ℝ)
787753adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℝ)
788330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℝ)
789787, 788resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
790286ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
7917903ad2antl2 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
792789, 791resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → ((𝑗 − 1) − 𝑘) ∈ ℝ)
793682adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 < (𝑗 − 1)) → 0 ≤ 𝑇)
7947933ad2antl1 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 0 ≤ 𝑇)
795283ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℝ)
796330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℝ)
797795, 796resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
798 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 < (𝑗 − 1))
799 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℤ)
800 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℤ)
801 1zzd 12360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℤ)
802800, 801zsubcld 12440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℤ)
803 zltlem1 12382 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑘 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) → (𝑘 < (𝑗 − 1) ↔ 𝑘 ≤ ((𝑗 − 1) − 1)))
804799, 802, 803syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑘 < (𝑗 − 1) ↔ 𝑘 ≤ ((𝑗 − 1) − 1)))
805798, 804mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ≤ ((𝑗 − 1) − 1))
806790, 797, 796, 805lesubd 11588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ≤ ((𝑗 − 1) − 𝑘))
8078063ad2antl2 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 1 ≤ ((𝑗 − 1) − 𝑘))
808778, 792, 794, 807lemulge12d 11922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ≤ (((𝑗 − 1) − 𝑘) · 𝑇))
809336, 337, 341sub32d 11373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑗 − 1) − 𝑘) = ((𝑗𝑘) − 1))
810809oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) − 1) · 𝑇))
811810adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) − 1) · 𝑇))
812 1cnd 10979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 1 ∈ ℂ)
813609, 812, 375subdird 11441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗𝑘) − 1) · 𝑇) = (((𝑗𝑘) · 𝑇) − (1 · 𝑇)))
814319oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝜓 → (((𝑗𝑘) · 𝑇) − (1 · 𝑇)) = (((𝑗𝑘) · 𝑇) − 𝑇))
815814adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗𝑘) · 𝑇) − (1 · 𝑇)) = (((𝑗𝑘) · 𝑇) − 𝑇))
816811, 813, 8153eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) · 𝑇) − 𝑇))
8178163adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) · 𝑇) − 𝑇))
818728, 726resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ∈ ℝ)
819269, 271, 276, 274iccsuble 43064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ (𝐶𝐵))
820819, 278breqtrrdi 5117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ 𝑇)
8218203adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ 𝑇)
822818, 393, 398, 821lesub2dd 11601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − 𝑇) ≤ (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))))
823817, 822eqbrtrd 5097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))))
8246103adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗𝑘) · 𝑇) ∈ ℂ)
825728recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
8266023adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℂ)
827824, 825, 826subsub2d 11370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))) = (((𝑗𝑘) · 𝑇) + ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
828621recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℂ)
829824, 828addcomd 11186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) + ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
830827, 829eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
831823, 830breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
832831adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
833778, 786, 779, 808, 832letrd 11141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
834777, 778, 779, 780, 833letrd 11141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
835721adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
836834, 835breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
837836adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
838837adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
839 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
840 simpll2 1212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ))
841 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 < 𝑗)
842 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → ¬ 𝑘 < (𝑗 − 1))
843581, 582, 580, 584lesubd 11588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ≤ (𝑗 − 1))
8448433adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ≤ (𝑗 − 1))
845 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → ¬ 𝑘 < (𝑗 − 1))
846284, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 − 1) ∈ ℝ)
847846adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
848286ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
849847, 848lenltd 11130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → ((𝑗 − 1) ≤ 𝑘 ↔ ¬ 𝑘 < (𝑗 − 1)))
850845, 849mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ≤ 𝑘)
8518503adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ≤ 𝑘)
8525803adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
8538463ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
854852, 853letri3d 11126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑘 = (𝑗 − 1) ↔ (𝑘 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑘)))
855844, 851, 854mpbir2and 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
856840, 841, 842, 855syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
857856adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
858 simpl1 1190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝜓)
859 simpl2l 1225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝑗 ∈ ℤ)
860 simpl3l 1227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
861 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 = (𝑗 − 1) → (𝑘 · 𝑇) = ((𝑗 − 1) · 𝑇))
862861oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 = (𝑗 − 1) → (𝑏 + (𝑘 · 𝑇)) = (𝑏 + ((𝑗 − 1) · 𝑇)))
863862eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 = (𝑗 − 1) → (𝑏 + ((𝑗 − 1) · 𝑇)) = (𝑏 + (𝑘 · 𝑇)))
864863adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) = (𝑏 + (𝑘 · 𝑇)))
865 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)
866864, 865eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
867866adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
8688673ad2antl3 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
869860, 868jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴))
870 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
8718703adant3r 1180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
872744adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
8732703ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℝ)
874873adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐶 ∈ ℝ)
875268adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐵 ∈ ℝ)
876270adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℝ)
877 elicc2 13153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)))
878875, 876, 877syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)))
879275, 878mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶))
880879simp3d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
8818803adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
882881adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
883 nne 2948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝐶 ≠ (𝑎 + (𝑗 · 𝑇)) ↔ 𝐶 = (𝑎 + (𝑗 · 𝑇)))
884540, 370pncand 11342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = 𝑎)
885884eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑎 = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
886885adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
887 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐶 = (𝑎 + (𝑗 · 𝑇)) → (𝐶 − (𝑗 · 𝑇)) = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
888887eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐶 = (𝑎 + (𝑗 · 𝑇)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = (𝐶 − (𝑗 · 𝑇)))
889888adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = (𝐶 − (𝑗 · 𝑇)))
890278oveq2i 7295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝐵 + 𝑇) = (𝐵 + (𝐶𝐵))
891267, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜓𝐵 ∈ ℂ)
892267, 160syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜓𝐶 ∈ ℂ)
893891, 892pncan3d 11344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝜓 → (𝐵 + (𝐶𝐵)) = 𝐶)
894890, 893eqtr2id 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝜓𝐶 = (𝐵 + 𝑇))
895894oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝜓 → (𝐶 − (𝑗 · 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
896895adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐶 − (𝑗 · 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
897891adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → 𝐵 ∈ ℂ)
898897, 370, 547subsub3d 11371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐵 − ((𝑗 · 𝑇) − 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
899550, 547mulsubfacd 11445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → ((𝑗 · 𝑇) − 𝑇) = ((𝑗 − 1) · 𝑇))
900899oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐵 − ((𝑗 · 𝑇) − 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
901896, 898, 9003eqtr2d 2785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → (𝐶 − (𝑗 · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
902901adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → (𝐶 − (𝑗 · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
903886, 889, 9023eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
9049033adantl3 1167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
905904adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
906 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
907906eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (𝐵 − ((𝑗 − 1) · 𝑇)) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)))
908907ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → (𝐵 − ((𝑗 − 1) · 𝑇)) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)))
909364ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝑏 ∈ ℂ)
910 1cnd 10979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → 1 ∈ ℂ)
911550, 910subcld 11341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝑗 − 1) ∈ ℂ)
912911, 547mulcld 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → ((𝑗 − 1) · 𝑇) ∈ ℂ)
913912adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑗 − 1) · 𝑇) ∈ ℂ)
914909, 913pncand 11342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
9159143adantl3 1167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
916915adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
917905, 908, 9163eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = 𝑏)
918883, 917sylan2b 594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ ¬ 𝐶 ≠ (𝑎 + (𝑗 · 𝑇))) → 𝑎 = 𝑏)
919309, 358ltned 11120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝜓𝑎𝑏)
920919neneqd 2949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜓 → ¬ 𝑎 = 𝑏)
9219203ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ¬ 𝑎 = 𝑏)
922921ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ ¬ 𝐶 ≠ (𝑎 + (𝑗 · 𝑇))) → ¬ 𝑎 = 𝑏)
923918, 922condan 815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐶 ≠ (𝑎 + (𝑗 · 𝑇)))
924872, 874, 882, 923leneltd 11138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
925871, 924sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
926267ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝜑)
927 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
928926, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐶𝐴)
929 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
930 simp2l 1198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
931654anbi1d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑐𝐴𝐶𝐴) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴)))
932 breq1 5078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐 < 𝐶 ↔ (𝑎 + (𝑗 · 𝑇)) < 𝐶))
933931, 9323anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) ↔ (𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶)))
934 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐶𝑐) = (𝐶 − (𝑎 + (𝑗 · 𝑇))))
935934breq2d 5087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐸 ≤ (𝐶𝑐) ↔ 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇)))))
936933, 935imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐)) ↔ ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))))
937 simp2r 1199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐶𝐴)
938403anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → ((𝑐𝐴𝑑𝐴) ↔ (𝑐𝐴𝐶𝐴)))
939 breq2 5079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → (𝑐 < 𝑑𝑐 < 𝐶))
940938, 9393anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑑 = 𝐶 → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶)))
941 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → (𝑑𝑐) = (𝐶𝑐))
942941breq2d 5087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑑 = 𝐶 → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ (𝐶𝑐)))
943940, 942imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑑 = 𝐶 → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐))))
944943, 515vtoclg 3506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐶𝐴 → ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐)))
945937, 944mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐))
946936, 945vtoclg 3506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇)))))
947930, 946mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
948926, 927, 928, 929, 947syl121anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
949948adantlrr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
9509493adantl2 1166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
951950adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
952892adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℂ)
953599sselda 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
954953recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
955952, 954npcand 11345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) = 𝐶)
956955eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐶 = ((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))))
957956oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
958957adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
9599583adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
960959adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
961 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) = (𝐶𝐵))
962961oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → ((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) = ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))))
963962oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
964963adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
965278eqcomi 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐶𝐵) = 𝑇
966965oveq1i 7294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) = (𝑇 + (𝑏 + ((𝑗 − 1) · 𝑇)))
967966a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) = (𝑇 + (𝑏 + ((𝑗 − 1) · 𝑇))))
968318adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝑇 ∈ ℂ)
969968, 954addcomd 11186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑇 + (𝑏 + ((𝑗 − 1) · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇))
970967, 969eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇))
971970oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
972971adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
9739723adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
974973adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
975954adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
9769753adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
977976adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
9783183ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℂ)
979978adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝑇 ∈ ℂ)
980618adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
981980recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
9829813adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
983982adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
984977, 979, 983addsubd 11362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
985974, 984eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
986960, 964, 9853eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
987986adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
988951, 987breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
989925, 988mpdan 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
990 simpl1 1190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝜓)
991 simpl3r 1228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
992 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵)
9932683ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 ∈ ℝ)
9949533adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
995272sselda 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ (𝐵[,]𝐶))
996268adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐵 ∈ ℝ)
997270adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℝ)
998 elicc2 13153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ≤ 𝐶)))
999996, 997, 998syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ≤ 𝐶)))
1000995, 999mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ≤ 𝐶))
10011000simp2d 1142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)))
100210013adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)))
1003 neqne 2952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (𝑏 + ((𝑗 − 1) · 𝑇)) ≠ 𝐵)
100410033ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ≠ 𝐵)
1005993, 994, 1002, 1004leneltd 11138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))
1006990, 991, 992, 1005syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))
10073903ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐸 ∈ ℝ)
10081007adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ∈ ℝ)
1009953adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
101010093adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
10112683ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℝ)
10121010, 1011resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ∈ ℝ)
10131012adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ∈ ℝ)
10141009, 980resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
1015293adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℝ)
10161014, 1015readdcld 11013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) ∈ ℝ)
101710163adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) ∈ ℝ)
10181017adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) ∈ ℝ)
1019267adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝜑)
102010193ad2antl1 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝜑)
10211020, 143syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐵𝐴)
1022 simpl3r 1228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
1023 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))
1024 simp2r 1199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
1025 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝑑𝐴 ↔ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴))
10261025anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → ((𝐵𝐴𝑑𝐴) ↔ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)))
1027 breq2 5079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝐵 < 𝑑𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))))
10281026, 10273anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) ↔ (𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))))
1029 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝑑𝐵) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))
10301029breq2d 5087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝐸 ≤ (𝑑𝐵) ↔ 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵)))
10311028, 1030imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵)) ↔ ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))))
10321031, 517vtoclg 3506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵)))
10331024, 1032mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))
10341020, 1021, 1022, 1023, 1033syl121anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))
1035268adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℝ)
1036980, 1035resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − 𝐵) ∈ ℝ)
1037965, 1015eqeltrid 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝐶𝐵) ∈ ℝ)
1038270adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐶 ∈ ℝ)
1039880adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
1040980, 1038, 1035, 1039lesub1dd 11600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − 𝐵) ≤ (𝐶𝐵))
10411036, 1037, 1014, 1040leadd2dd 11599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑎 + (𝑗 · 𝑇)) − 𝐵)) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝐶𝐵)))
1042975, 981npcand 11345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))) = (𝑏 + ((𝑗 − 1) · 𝑇)))
10431042eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))))
10441043oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) = ((((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))) − 𝐵))
10451014recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℂ)
1046891adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℂ)
10471045, 981, 1046addsubassd 11361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))) − 𝐵) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑎 + (𝑗 · 𝑇)) − 𝐵)))
10481044, 1047eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑎 + (𝑗 · 𝑇)) − 𝐵)))
1049278oveq2i 7295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝐶𝐵))
10501049a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝐶𝐵)))
10511041, 1048, 10503brtr4d 5107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
105210513adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10531052adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10541008, 1013, 1018, 1034, 1053letrd 11141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10551006, 1054syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
1056989, 1055pm2.61dan 810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
1057858, 859, 869, 1056syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
1058720eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏𝑎) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
10591058adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 = (𝑗 − 1)) → (𝑏𝑎) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
1060862oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 = (𝑗 − 1) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
10611060adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
1062 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 = (𝑗 − 1) → (𝑗𝑘) = (𝑗 − (𝑗 − 1)))
10631062oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 = (𝑗 − 1) → ((𝑗𝑘) · 𝑇) = ((𝑗 − (𝑗 − 1)) · 𝑇))
10641063adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑗𝑘) · 𝑇) = ((𝑗 − (𝑗 − 1)) · 𝑇))
1065 1cnd 10979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑗 ∈ ℤ → 1 ∈ ℂ)
1066335, 1065nncand 11346 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℤ → (𝑗 − (𝑗 − 1)) = 1)
10671066oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑗 ∈ ℤ → ((𝑗 − (𝑗 − 1)) · 𝑇) = (1 · 𝑇))
10681067ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑗 − (𝑗 − 1)) · 𝑇) = (1 · 𝑇))
1069319ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → (1 · 𝑇) = 𝑇)
10701064, 1068, 10693eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑗𝑘) · 𝑇) = 𝑇)
10711061, 1070oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10721071adantlrr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10731059, 1072eqtr2d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (𝑏𝑎))
107410733adantl3 1167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (𝑏𝑎))
10751057, 1074breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
1076839, 857, 1075syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
1077838, 1076pm2.61dan 810 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝐸 ≤ (𝑏𝑎))
1078724, 776, 732, 1077syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (𝑏𝑎))
1079723, 1078pm2.61dan 810 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → 𝐸 ≤ (𝑏𝑎))
1080387, 1079mpdan 684 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (𝑏𝑎))
1081309, 302, 358ltled 11132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜓𝑎𝑏)
1082309, 302, 1081abssuble0d 15153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜓 → (abs‘(𝑎𝑏)) = (𝑏𝑎))
10831082eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜓 → (𝑏𝑎) = (abs‘(𝑎𝑏)))
108410833ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏𝑎) = (abs‘(𝑎𝑏)))
10851080, 1084breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏)))
108610853exp 1118 . . . . . . . . . . . . . . . . . . . . 21 (𝜓 → ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝐸 ≤ (abs‘(𝑎𝑏)))))
10871086rexlimdvv 3223 . . . . . . . . . . . . . . . . . . . 20 (𝜓 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝐸 ≤ (abs‘(𝑎𝑏))))
1088264, 1087mpd 15 . . . . . . . . . . . . . . . . . . 19 (𝜓𝐸 ≤ (abs‘(𝑎𝑏)))
1089263, 1088sylbir 234 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏)))
1090262, 1089chvarvv 2003 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑏)))
1091249, 1090chvarvv 2003 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1092229, 235, 236, 1091syl21anc 835 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1093 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → ¬ 𝑦 < 𝑧)
1094 simpl3 1192 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑦𝑧)
1095 simpl1 1190 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑦 ∈ ℝ)
1096 simpl2 1191 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑧 ∈ ℝ)
10971095, 1096lttri2d 11123 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → (𝑦𝑧 ↔ (𝑦 < 𝑧𝑧 < 𝑦)))
10981094, 1097mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → (𝑦 < 𝑧𝑧 < 𝑦))
10991098ord 861 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → (¬ 𝑦 < 𝑧𝑧 < 𝑦))
11001093, 1099mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑧 < 𝑦)
11011100adantll 711 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ¬ 𝑦 < 𝑧) → 𝑧 < 𝑦)
11021101adantlr 712 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑦 < 𝑧) → 𝑧 < 𝑦)
1103 simplll 772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → 𝜑)
1104 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → 𝑧 ∈ ℝ)
1105 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → 𝑦 ∈ ℝ)
1106 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → 𝑧 < 𝑦)
11071104, 1105, 11063jca 1127 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))
11081107adantll 711 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑧 < 𝑦) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))
11091108adantlr 712 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))
1110 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = 𝑖 → (𝑗 · 𝑇) = (𝑖 · 𝑇))
11111110oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑖 → (𝑦 + (𝑗 · 𝑇)) = (𝑦 + (𝑖 · 𝑇)))
11121111eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑖 → ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑖 · 𝑇)) ∈ 𝐴))
11131112anbi1d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 𝑖 → (((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)))
1114 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 = 𝑙 → (𝑘 · 𝑇) = (𝑙 · 𝑇))
11151114oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑇)) = (𝑧 + (𝑙 · 𝑇)))
11161115eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑙 → ((𝑧 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴))
11171116anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑙 → (((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴)))
11181113, 1117cbvrex2vw 3398 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴))
1119 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝑘 → (𝑖 · 𝑇) = (𝑘 · 𝑇))
11201119oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑘 → (𝑦 + (𝑖 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
11211120eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 = 𝑘 → ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11221121anbi1d 630 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑘 → (((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴)))
1123 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑗 → (𝑙 · 𝑇) = (𝑗 · 𝑇))
11241123oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑙 = 𝑗 → (𝑧 + (𝑙 · 𝑇)) = (𝑧 + (𝑗 · 𝑇)))
11251124eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑙 = 𝑗 → ((𝑧 + (𝑙 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
11261125anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = 𝑗 → (((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴)))
11271122, 1126cbvrex2vw 3398 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ∃𝑘 ∈ ℤ ∃𝑗 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
1128 rexcom 3235 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑘 ∈ ℤ ∃𝑗 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
1129 ancom 461 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴) ↔ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
113011292rexbii 3183 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11311127, 1128, 11303bitri 297 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11321118, 1131sylbb 218 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11331132ad2antlr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
1134 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑦 → (𝑏 ∈ ℝ ↔ 𝑦 ∈ ℝ))
1135 breq2 5079 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑦 → (𝑧 < 𝑏𝑧 < 𝑦))
11361134, 11353anbi23d 1438 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑦 → ((𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏) ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)))
11371136anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → ((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ↔ (𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))))
1138 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 = 𝑦 → (𝑏 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
11391138eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑦 → ((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11401139anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑦 → (((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)))
114111402rexbidv 3230 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)))
11421137, 1141anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))))
1143 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑦 → (𝑧𝑏) = (𝑧𝑦))
11441143fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → (abs‘(𝑧𝑏)) = (abs‘(𝑧𝑦)))
11451144breq2d 5087 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → (𝐸 ≤ (abs‘(𝑧𝑏)) ↔ 𝐸 ≤ (abs‘(𝑧𝑦))))
11461142, 1145imbi12d 345 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑦 → ((((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑏))) ↔ (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑦)))))
1147 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → (𝑎 ∈ ℝ ↔ 𝑧 ∈ ℝ))
1148 breq1 5078 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → (𝑎 < 𝑏𝑧 < 𝑏))
11491147, 11483anbi13d 1437 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑧 → ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ↔ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)))
11501149anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑧 → ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ↔ (𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏))))
1151 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑧 → (𝑎 + (𝑗 · 𝑇)) = (𝑧 + (𝑗 · 𝑇)))
11521151eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
11531152anbi1d 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑧 → (((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
115411532rexbidv 3230 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑧 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
11551150, 1154anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑧 → (((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))))
1156 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑧 → (𝑎𝑏) = (𝑧𝑏))
11571156fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑧 → (abs‘(𝑎𝑏)) = (abs‘(𝑧𝑏)))
11581157breq2d 5087 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑧 → (𝐸 ≤ (abs‘(𝑎𝑏)) ↔ 𝐸 ≤ (abs‘(𝑧𝑏))))
11591155, 1158imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑧 → ((((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏))) ↔ (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑏)))))
11601159, 1089chvarvv 2003 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑏)))
11611146, 1160chvarvv 2003 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑦)))
11621103, 1109, 1133, 1161syl21anc 835 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → 𝐸 ≤ (abs‘(𝑧𝑦)))
1163 recn 10970 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
11641163adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
1165 recn 10970 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
11661165adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
11671164, 1166abssubd 15174 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
11681167adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
11691168ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
11701162, 1169breqtrd 5101 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → 𝐸 ≤ (abs‘(𝑦𝑧)))
11711170ex 413 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑧 < 𝑦𝐸 ≤ (abs‘(𝑦𝑧))))
117211713adantlr3 42591 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑧 < 𝑦𝐸 ≤ (abs‘(𝑦𝑧))))
11731172adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑦 < 𝑧) → (𝑧 < 𝑦𝐸 ≤ (abs‘(𝑦𝑧))))
11741102, 1173mpd 15 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑦 < 𝑧) → 𝐸 ≤ (abs‘(𝑦𝑧)))
11751092, 1174pm2.61dan 810 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1176196, 204, 228, 1175syl21anc 835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1177389ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝐸 ∈ ℝ)
1178198, 201resubcld 11412 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → (𝑦𝑧) ∈ ℝ)
11791178recnd 11012 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → (𝑦𝑧) ∈ ℂ)
11801179abscld 15157 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → (abs‘(𝑦𝑧)) ∈ ℝ)
11811180adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → (abs‘(𝑦𝑧)) ∈ ℝ)
11821177, 1181lenltd 11130 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → (𝐸 ≤ (abs‘(𝑦𝑧)) ↔ ¬ (abs‘(𝑦𝑧)) < 𝐸))
11831176, 1182mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → ¬ (abs‘(𝑦𝑧)) < 𝐸)
1184 nan 827 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸)) ↔ (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → ¬ (abs‘(𝑦𝑧)) < 𝐸))
11851183, 1184mpbir 230 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
11861185ralrimivva 3124 . . . . . . . . . 10 (𝜑 → ∀𝑦𝐻𝑧𝐻 ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
1187 ralnex2 3190 . . . . . . . . . 10 (∀𝑦𝐻𝑧𝐻 ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸) ↔ ¬ ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
11881186, 1187sylib 217 . . . . . . . . 9 (𝜑 → ¬ ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
11891188ad2antrr 723 . . . . . . . 8 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → ¬ ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
1190195, 1189pm2.65da 814 . . . . . . 7 ((𝜑𝑥 𝐾) → ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐻))
11911190intnanrd 490 . . . . . 6 ((𝜑𝑥 𝐾) → ¬ (𝑥 ∈ ((limPt‘𝐽)‘𝐻) ∧ 𝑥 ∈ (𝑋[,]𝑌)))
1192 elin 3904 . . . . . 6 (𝑥 ∈ (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)) ↔ (𝑥 ∈ ((limPt‘𝐽)‘𝐻) ∧ 𝑥 ∈ (𝑋[,]𝑌)))
11931191, 1192sylnibr 329 . . . . 5 ((𝜑𝑥 𝐾) → ¬ 𝑥 ∈ (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)))
119413a1i 11 . . . . . 6 ((𝜑𝑥 𝐾) → 𝐽 ∈ Top)
119514adantr 481 . . . . . 6 ((𝜑𝑥 𝐾) → (𝑋[,]𝑌) ⊆ ℝ)
119611adantr 481 . . . . . 6 ((𝜑𝑥 𝐾) → 𝐻 ⊆ (𝑋[,]𝑌))
119717, 4restlp 22343 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ 𝐻 ⊆ (𝑋[,]𝑌)) → ((limPt‘𝐾)‘𝐻) = (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)))
11981194, 1195, 1196, 1197syl3anc 1370 . . . . 5 ((𝜑𝑥 𝐾) → ((limPt‘𝐾)‘𝐻) = (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)))
11991193, 1198neleqtrrd 2862 . . . 4 ((𝜑𝑥 𝐾) → ¬ 𝑥 ∈ ((limPt‘𝐾)‘𝐻))
12001199nrexdv 3199 . . 3 (𝜑 → ¬ ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
12011200adantr 481 . 2 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → ¬ ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
120228, 1201condan 815 1 (𝜑𝐻 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  {crab 3069  Vcvv 3433  cdif 3885  cin 3887  wss 3888  c0 4257  cop 4568   cuni 4840   class class class wbr 5075   I cid 5489   Or wor 5503   × cxp 5588  dom cdm 5590  ran crn 5591  cres 5592  ccom 5594  Fun wfun 6431   Fn wfn 6432  wf 6433  cfv 6437  (class class class)co 7284  Fincfn 8742  infcinf 9209  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885   < clt 11018  cle 11019  cmin 11214   / cdiv 11641  cz 12328  +crp 12739  (,)cioo 13088  [,]cicc 13091  abscabs 14954  t crest 17140  topGenctg 17157  Topctop 22051  limPtclp 22294  Compccmp 22546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fi 9179  df-sup 9210  df-inf 9211  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-n0 12243  df-z 12329  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-icc 13095  df-seq 13731  df-exp 13792  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-rest 17142  df-topgen 17163  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-top 22052  df-topon 22069  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-cmp 22547
This theorem is referenced by:  fourierdlem54  43708
  Copyright terms: Public domain W3C validator