Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem42 Structured version   Visualization version   GIF version

Theorem fourierdlem42 46195
Description: The set of points in a moved partition are finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.)
Hypotheses
Ref Expression
fourierdlem42.b (𝜑𝐵 ∈ ℝ)
fourierdlem42.c (𝜑𝐶 ∈ ℝ)
fourierdlem42.bc (𝜑𝐵 < 𝐶)
fourierdlem42.t 𝑇 = (𝐶𝐵)
fourierdlem42.a (𝜑𝐴 ⊆ (𝐵[,]𝐶))
fourierdlem42.af (𝜑𝐴 ∈ Fin)
fourierdlem42.ba (𝜑𝐵𝐴)
fourierdlem42.ca (𝜑𝐶𝐴)
fourierdlem42.d 𝐷 = (abs ∘ − )
fourierdlem42.i 𝐼 = ((𝐴 × 𝐴) ∖ I )
fourierdlem42.r 𝑅 = ran (𝐷𝐼)
fourierdlem42.e 𝐸 = inf(𝑅, ℝ, < )
fourierdlem42.x (𝜑𝑋 ∈ ℝ)
fourierdlem42.y (𝜑𝑌 ∈ ℝ)
fourierdlem42.j 𝐽 = (topGen‘ran (,))
fourierdlem42.k 𝐾 = (𝐽t (𝑋[,]𝑌))
fourierdlem42.h 𝐻 = {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴}
fourierdlem42.15 (𝜓 ↔ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
Assertion
Ref Expression
fourierdlem42 (𝜑𝐻 ∈ Fin)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑗,𝑘,𝑥   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝐸,𝑎,𝑏,𝑗,𝑘   𝐻,𝑎,𝑏,𝑥   𝑥,𝐼   𝐽,𝑎,𝑏   𝐾,𝑎,𝑏,𝑥   𝑥,𝑅   𝑇,𝑎,𝑏,𝑗,𝑘,𝑥   𝑥,𝑋   𝑥,𝑌   𝜑,𝑎,𝑏,𝑥   𝜓,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑥,𝑎,𝑏)   𝐵(𝑗,𝑘,𝑎,𝑏)   𝐶(𝑗,𝑘,𝑎,𝑏)   𝐷(𝑗,𝑘,𝑎,𝑏)   𝑅(𝑗,𝑘,𝑎,𝑏)   𝐸(𝑥)   𝐻(𝑗,𝑘)   𝐼(𝑗,𝑘,𝑎,𝑏)   𝐽(𝑥,𝑗,𝑘)   𝐾(𝑗,𝑘)   𝑋(𝑗,𝑘,𝑎,𝑏)   𝑌(𝑗,𝑘,𝑎,𝑏)

Proof of Theorem fourierdlem42
Dummy variables 𝑐 𝑑 𝑖 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem42.x . . . . 5 (𝜑𝑋 ∈ ℝ)
2 fourierdlem42.y . . . . 5 (𝜑𝑌 ∈ ℝ)
3 fourierdlem42.j . . . . . 6 𝐽 = (topGen‘ran (,))
4 fourierdlem42.k . . . . . 6 𝐾 = (𝐽t (𝑋[,]𝑌))
53, 4icccmp 24741 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝐾 ∈ Comp)
61, 2, 5syl2anc 584 . . . 4 (𝜑𝐾 ∈ Comp)
76adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → 𝐾 ∈ Comp)
8 fourierdlem42.h . . . . . 6 𝐻 = {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴}
9 ssrab2 4027 . . . . . . 7 {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ⊆ (𝑋[,]𝑌)
109a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ⊆ (𝑋[,]𝑌))
118, 10eqsstrid 3968 . . . . 5 (𝜑𝐻 ⊆ (𝑋[,]𝑌))
12 retop 24676 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
133, 12eqeltri 2827 . . . . . . 7 𝐽 ∈ Top
141, 2iccssred 13334 . . . . . . 7 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
15 uniretop 24677 . . . . . . . . 9 ℝ = (topGen‘ran (,))
163unieqi 4868 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
1715, 16eqtr4i 2757 . . . . . . . 8 ℝ = 𝐽
1817restuni 23077 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋[,]𝑌) ⊆ ℝ) → (𝑋[,]𝑌) = (𝐽t (𝑋[,]𝑌)))
1913, 14, 18sylancr 587 . . . . . 6 (𝜑 → (𝑋[,]𝑌) = (𝐽t (𝑋[,]𝑌)))
204unieqi 4868 . . . . . . 7 𝐾 = (𝐽t (𝑋[,]𝑌))
2120eqcomi 2740 . . . . . 6 (𝐽t (𝑋[,]𝑌)) = 𝐾
2219, 21eqtrdi 2782 . . . . 5 (𝜑 → (𝑋[,]𝑌) = 𝐾)
2311, 22sseqtrd 3966 . . . 4 (𝜑𝐻 𝐾)
2423adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → 𝐻 𝐾)
25 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → ¬ 𝐻 ∈ Fin)
26 eqid 2731 . . . 4 𝐾 = 𝐾
2726bwth 23325 . . 3 ((𝐾 ∈ Comp ∧ 𝐻 𝐾 ∧ ¬ 𝐻 ∈ Fin) → ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
287, 24, 25, 27syl3anc 1373 . 2 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
2911, 14sstrd 3940 . . . . . . . . . 10 (𝜑𝐻 ⊆ ℝ)
3029ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → 𝐻 ⊆ ℝ)
31 ne0i 4288 . . . . . . . . . 10 (𝑥 ∈ ((limPt‘𝐽)‘𝐻) → ((limPt‘𝐽)‘𝐻) ≠ ∅)
3231adantl 481 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → ((limPt‘𝐽)‘𝐻) ≠ ∅)
33 fourierdlem42.e . . . . . . . . . . 11 𝐸 = inf(𝑅, ℝ, < )
34 fourierdlem42.r . . . . . . . . . . . . 13 𝑅 = ran (𝐷𝐼)
35 absf 15245 . . . . . . . . . . . . . . . . . 18 abs:ℂ⟶ℝ
36 ffn 6651 . . . . . . . . . . . . . . . . . 18 (abs:ℂ⟶ℝ → abs Fn ℂ)
3735, 36ax-mp 5 . . . . . . . . . . . . . . . . 17 abs Fn ℂ
38 subf 11362 . . . . . . . . . . . . . . . . . 18 − :(ℂ × ℂ)⟶ℂ
39 ffn 6651 . . . . . . . . . . . . . . . . . 18 ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ))
4038, 39ax-mp 5 . . . . . . . . . . . . . . . . 17 − Fn (ℂ × ℂ)
41 frn 6658 . . . . . . . . . . . . . . . . . 18 ( − :(ℂ × ℂ)⟶ℂ → ran − ⊆ ℂ)
4238, 41ax-mp 5 . . . . . . . . . . . . . . . . 17 ran − ⊆ ℂ
43 fnco 6599 . . . . . . . . . . . . . . . . 17 ((abs Fn ℂ ∧ − Fn (ℂ × ℂ) ∧ ran − ⊆ ℂ) → (abs ∘ − ) Fn (ℂ × ℂ))
4437, 40, 42, 43mp3an 1463 . . . . . . . . . . . . . . . 16 (abs ∘ − ) Fn (ℂ × ℂ)
45 fourierdlem42.d . . . . . . . . . . . . . . . . 17 𝐷 = (abs ∘ − )
4645fneq1i 6578 . . . . . . . . . . . . . . . 16 (𝐷 Fn (ℂ × ℂ) ↔ (abs ∘ − ) Fn (ℂ × ℂ))
4744, 46mpbir 231 . . . . . . . . . . . . . . 15 𝐷 Fn (ℂ × ℂ)
48 fourierdlem42.i . . . . . . . . . . . . . . . 16 𝐼 = ((𝐴 × 𝐴) ∖ I )
49 fourierdlem42.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
50 fourierdlem42.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
51 fourierdlem42.c . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
5250, 51iccssred 13334 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
53 ax-resscn 11063 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
5452, 53sstrdi 3942 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
5549, 54sstrd 3940 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℂ)
56 xpss12 5629 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℂ ∧ 𝐴 ⊆ ℂ) → (𝐴 × 𝐴) ⊆ (ℂ × ℂ))
5755, 55, 56syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 × 𝐴) ⊆ (ℂ × ℂ))
5857ssdifssd 4094 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 × 𝐴) ∖ I ) ⊆ (ℂ × ℂ))
5948, 58eqsstrid 3968 . . . . . . . . . . . . . . 15 (𝜑𝐼 ⊆ (ℂ × ℂ))
60 fnssres 6604 . . . . . . . . . . . . . . 15 ((𝐷 Fn (ℂ × ℂ) ∧ 𝐼 ⊆ (ℂ × ℂ)) → (𝐷𝐼) Fn 𝐼)
6147, 59, 60sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝐼) Fn 𝐼)
62 fvres 6841 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐼 → ((𝐷𝐼)‘𝑥) = (𝐷𝑥))
6362adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) = (𝐷𝑥))
6445fveq1i 6823 . . . . . . . . . . . . . . . . . . 19 (𝐷𝑥) = ((abs ∘ − )‘𝑥)
6564a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → (𝐷𝑥) = ((abs ∘ − )‘𝑥))
66 ffun 6654 . . . . . . . . . . . . . . . . . . . 20 ( − :(ℂ × ℂ)⟶ℂ → Fun − )
6738, 66ax-mp 5 . . . . . . . . . . . . . . . . . . 19 Fun −
6859sselda 3929 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → 𝑥 ∈ (ℂ × ℂ))
6938fdmi 6662 . . . . . . . . . . . . . . . . . . . 20 dom − = (ℂ × ℂ)
7068, 69eleqtrrdi 2842 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → 𝑥 ∈ dom − )
71 fvco 6920 . . . . . . . . . . . . . . . . . . 19 ((Fun − ∧ 𝑥 ∈ dom − ) → ((abs ∘ − )‘𝑥) = (abs‘( − ‘𝑥)))
7267, 70, 71sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ((abs ∘ − )‘𝑥) = (abs‘( − ‘𝑥)))
7363, 65, 723eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) = (abs‘( − ‘𝑥)))
7438a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → − :(ℂ × ℂ)⟶ℂ)
7574, 68ffvelcdmd 7018 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ( − ‘𝑥) ∈ ℂ)
7675abscld 15346 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → (abs‘( − ‘𝑥)) ∈ ℝ)
7773, 76eqeltrd 2831 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) ∈ ℝ)
78 elxp2 5638 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℂ × ℂ) ↔ ∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩)
7968, 78sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → ∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩)
80 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) = ( − ‘⟨𝑦, 𝑧⟩))
81803ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘𝑥) = ( − ‘⟨𝑦, 𝑧⟩))
82 df-ov 7349 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝑧) = ( − ‘⟨𝑦, 𝑧⟩)
83 simp1l 1198 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝜑)
84 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥 = ⟨𝑦, 𝑧⟩)
85 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥𝐼)
8684, 85eqeltrrd 2832 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
8786adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝐼) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
88873adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
8955adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝐴 ⊆ ℂ)
9048eleq2i 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑦, 𝑧⟩ ∈ 𝐼 ↔ ⟨𝑦, 𝑧⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
91 eldif 3907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑦, 𝑧⟩ ∈ ((𝐴 × 𝐴) ∖ I ) ↔ (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ∧ ¬ ⟨𝑦, 𝑧⟩ ∈ I ))
9290, 91sylbb 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ∧ ¬ ⟨𝑦, 𝑧⟩ ∈ I ))
9392simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴))
94 opelxp 5650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ↔ (𝑦𝐴𝑧𝐴))
9593, 94sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → (𝑦𝐴𝑧𝐴))
9695adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → (𝑦𝐴𝑧𝐴))
9796simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦𝐴)
9889, 97sseldd 3930 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦 ∈ ℂ)
9996simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑧𝐴)
10089, 99sseldd 3930 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑧 ∈ ℂ)
10192simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ ⟨𝑦, 𝑧⟩ ∈ I )
102 df-br 5090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 I 𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ I )
103101, 102sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ 𝑦 I 𝑧)
104 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 ∈ V
105104ideq 5791 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 I 𝑧𝑦 = 𝑧)
106103, 105sylnib 328 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ 𝑦 = 𝑧)
107106neqned 2935 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑦, 𝑧⟩ ∈ 𝐼𝑦𝑧)
108107adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦𝑧)
10998, 100, 108subne0d 11481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → (𝑦𝑧) ≠ 0)
11083, 88, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → (𝑦𝑧) ≠ 0)
11182, 110eqnetrrid 3003 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘⟨𝑦, 𝑧⟩) ≠ 0)
11281, 111eqnetrd 2995 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘𝑥) ≠ 0)
1131123exp 1119 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) ≠ 0)))
114113rexlimdvv 3188 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → (∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) ≠ 0))
11579, 114mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ( − ‘𝑥) ≠ 0)
116 absgt0 15232 . . . . . . . . . . . . . . . . . . 19 (( − ‘𝑥) ∈ ℂ → (( − ‘𝑥) ≠ 0 ↔ 0 < (abs‘( − ‘𝑥))))
11775, 116syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → (( − ‘𝑥) ≠ 0 ↔ 0 < (abs‘( − ‘𝑥))))
118115, 117mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → 0 < (abs‘( − ‘𝑥)))
11973eqcomd 2737 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → (abs‘( − ‘𝑥)) = ((𝐷𝐼)‘𝑥))
120118, 119breqtrd 5115 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 0 < ((𝐷𝐼)‘𝑥))
12177, 120elrpd 12931 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) ∈ ℝ+)
122121ralrimiva 3124 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐼 ((𝐷𝐼)‘𝑥) ∈ ℝ+)
123 fnfvrnss 7054 . . . . . . . . . . . . . 14 (((𝐷𝐼) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝐷𝐼)‘𝑥) ∈ ℝ+) → ran (𝐷𝐼) ⊆ ℝ+)
12461, 122, 123syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ran (𝐷𝐼) ⊆ ℝ+)
12534, 124eqsstrid 3968 . . . . . . . . . . . 12 (𝜑𝑅 ⊆ ℝ+)
126 ltso 11193 . . . . . . . . . . . . . 14 < Or ℝ
127126a1i 11 . . . . . . . . . . . . 13 (𝜑 → < Or ℝ)
128 fourierdlem42.af . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ Fin)
129 xpfi 9204 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ∈ Fin)
130128, 128, 129syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 × 𝐴) ∈ Fin)
131 diffi 9084 . . . . . . . . . . . . . . . . . 18 ((𝐴 × 𝐴) ∈ Fin → ((𝐴 × 𝐴) ∖ I ) ∈ Fin)
132130, 131syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 × 𝐴) ∖ I ) ∈ Fin)
13348, 132eqeltrid 2835 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ Fin)
134 fnfi 9087 . . . . . . . . . . . . . . . 16 (((𝐷𝐼) Fn 𝐼𝐼 ∈ Fin) → (𝐷𝐼) ∈ Fin)
13561, 133, 134syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐼) ∈ Fin)
136 rnfi 9224 . . . . . . . . . . . . . . 15 ((𝐷𝐼) ∈ Fin → ran (𝐷𝐼) ∈ Fin)
137135, 136syl 17 . . . . . . . . . . . . . 14 (𝜑 → ran (𝐷𝐼) ∈ Fin)
13834, 137eqeltrid 2835 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Fin)
13934a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 = ran (𝐷𝐼))
14045a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 = (abs ∘ − ))
141140reseq1d 5926 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷𝐼) = ((abs ∘ − ) ↾ 𝐼))
142141fveq1d 6824 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) = (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩))
143 fourierdlem42.ba . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵𝐴)
144 fourierdlem42.ca . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶𝐴)
145 opelxp 5650 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) ↔ (𝐵𝐴𝐶𝐴))
146143, 144, 145sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴))
147 fourierdlem42.bc . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 < 𝐶)
14850, 147ltned 11249 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵𝐶)
149148neneqd 2933 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 𝐵 = 𝐶)
150 ideqg 5790 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶𝐴 → (𝐵 I 𝐶𝐵 = 𝐶))
151144, 150syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐵 I 𝐶𝐵 = 𝐶))
152149, 151mtbird 325 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ¬ 𝐵 I 𝐶)
153 df-br 5090 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 I 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ I )
154152, 153sylnib 328 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ ⟨𝐵, 𝐶⟩ ∈ I )
155146, 154eldifd 3908 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
156155, 48eleqtrrdi 2842 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ 𝐼)
157 fvres 6841 . . . . . . . . . . . . . . . . . 18 (⟨𝐵, 𝐶⟩ ∈ 𝐼 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩) = ((abs ∘ − )‘⟨𝐵, 𝐶⟩))
158156, 157syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩) = ((abs ∘ − )‘⟨𝐵, 𝐶⟩))
15950recnd 11140 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℂ)
16051recnd 11140 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℂ)
161 opelxp 5650 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝐵, 𝐶⟩ ∈ (ℂ × ℂ) ↔ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
162159, 160, 161sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (ℂ × ℂ))
163162, 69eleqtrrdi 2842 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ dom − )
164 fvco 6920 . . . . . . . . . . . . . . . . . . 19 ((Fun − ∧ ⟨𝐵, 𝐶⟩ ∈ dom − ) → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘( − ‘⟨𝐵, 𝐶⟩)))
16567, 163, 164sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘( − ‘⟨𝐵, 𝐶⟩)))
166 df-ov 7349 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐶) = ( − ‘⟨𝐵, 𝐶⟩)
167166eqcomi 2740 . . . . . . . . . . . . . . . . . . . 20 ( − ‘⟨𝐵, 𝐶⟩) = (𝐵𝐶)
168167a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( − ‘⟨𝐵, 𝐶⟩) = (𝐵𝐶))
169168fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘( − ‘⟨𝐵, 𝐶⟩)) = (abs‘(𝐵𝐶)))
170165, 169eqtrd 2766 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘(𝐵𝐶)))
171142, 158, 1703eqtrrd 2771 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(𝐵𝐶)) = ((𝐷𝐼)‘⟨𝐵, 𝐶⟩))
172 fnfvelrn 7013 . . . . . . . . . . . . . . . . 17 (((𝐷𝐼) Fn 𝐼 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐼) → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) ∈ ran (𝐷𝐼))
17361, 156, 172syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) ∈ ran (𝐷𝐼))
174171, 173eqeltrd 2831 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝐵𝐶)) ∈ ran (𝐷𝐼))
175 ne0i 4288 . . . . . . . . . . . . . . 15 ((abs‘(𝐵𝐶)) ∈ ran (𝐷𝐼) → ran (𝐷𝐼) ≠ ∅)
176174, 175syl 17 . . . . . . . . . . . . . 14 (𝜑 → ran (𝐷𝐼) ≠ ∅)
177139, 176eqnetrd 2995 . . . . . . . . . . . . 13 (𝜑𝑅 ≠ ∅)
178 resss 5949 . . . . . . . . . . . . . . . . 17 (𝐷𝐼) ⊆ 𝐷
179 rnss 5878 . . . . . . . . . . . . . . . . 17 ((𝐷𝐼) ⊆ 𝐷 → ran (𝐷𝐼) ⊆ ran 𝐷)
180178, 179ax-mp 5 . . . . . . . . . . . . . . . 16 ran (𝐷𝐼) ⊆ ran 𝐷
18145rneqi 5876 . . . . . . . . . . . . . . . . 17 ran 𝐷 = ran (abs ∘ − )
182 rncoss 5915 . . . . . . . . . . . . . . . . . 18 ran (abs ∘ − ) ⊆ ran abs
183 frn 6658 . . . . . . . . . . . . . . . . . . 19 (abs:ℂ⟶ℝ → ran abs ⊆ ℝ)
18435, 183ax-mp 5 . . . . . . . . . . . . . . . . . 18 ran abs ⊆ ℝ
185182, 184sstri 3939 . . . . . . . . . . . . . . . . 17 ran (abs ∘ − ) ⊆ ℝ
186181, 185eqsstri 3976 . . . . . . . . . . . . . . . 16 ran 𝐷 ⊆ ℝ
187180, 186sstri 3939 . . . . . . . . . . . . . . 15 ran (𝐷𝐼) ⊆ ℝ
18834, 187eqsstri 3976 . . . . . . . . . . . . . 14 𝑅 ⊆ ℝ
189188a1i 11 . . . . . . . . . . . . 13 (𝜑𝑅 ⊆ ℝ)
190 fiinfcl 9387 . . . . . . . . . . . . 13 (( < Or ℝ ∧ (𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝑅 ⊆ ℝ)) → inf(𝑅, ℝ, < ) ∈ 𝑅)
191127, 138, 177, 189, 190syl13anc 1374 . . . . . . . . . . . 12 (𝜑 → inf(𝑅, ℝ, < ) ∈ 𝑅)
192125, 191sseldd 3930 . . . . . . . . . . 11 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ+)
19333, 192eqeltrid 2835 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ+)
194193ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → 𝐸 ∈ ℝ+)
1953, 30, 32, 194lptre2pt 45686 . . . . . . . 8 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
196 simpll 766 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝜑)
19729sselda 3929 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐻) → 𝑦 ∈ ℝ)
198197adantrr 717 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → 𝑦 ∈ ℝ)
199198adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
20029sselda 3929 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐻) → 𝑧 ∈ ℝ)
201200adantrl 716 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → 𝑧 ∈ ℝ)
202201adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑧 ∈ ℝ)
203 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑦𝑧)
204199, 202, 2033jca 1128 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧))
2058eleq2i 2823 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐻𝑦 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴})
206 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝑥 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
207206eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
208207rexbidv 3156 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
209 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
210209oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
211210eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
212211cbvrexvw 3211 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
213208, 212bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
214213elrab 3642 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ↔ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
215205, 214sylbb 219 . . . . . . . . . . . . . . . . . 18 (𝑦𝐻 → (𝑦 ∈ (𝑋[,]𝑌) ∧ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
216215simprd 495 . . . . . . . . . . . . . . . . 17 (𝑦𝐻 → ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
217216adantr 480 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑧𝐻) → ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
2188eleq2i 2823 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐻𝑧 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴})
219 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (𝑥 + (𝑘 · 𝑇)) = (𝑧 + (𝑘 · 𝑇)))
220219eleq1d 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
221220rexbidv 3156 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
222221elrab 3642 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ↔ (𝑧 ∈ (𝑋[,]𝑌) ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
223218, 222sylbb 219 . . . . . . . . . . . . . . . . . 18 (𝑧𝐻 → (𝑧 ∈ (𝑋[,]𝑌) ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
224223simprd 495 . . . . . . . . . . . . . . . . 17 (𝑧𝐻 → ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)
225224adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑧𝐻) → ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)
226 reeanv 3204 . . . . . . . . . . . . . . . 16 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ (∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
227217, 225, 226sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝑦𝐻𝑧𝐻) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
228227ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
229 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → 𝜑)
230 simpl1 1192 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑦 ∈ ℝ)
231 simpl2 1193 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑧 ∈ ℝ)
232 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑦 < 𝑧)
233230, 231, 2323jca 1128 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
234233adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
235234adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
236 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
237 eleq1 2819 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → (𝑏 ∈ ℝ ↔ 𝑧 ∈ ℝ))
238 breq2 5093 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → (𝑦 < 𝑏𝑦 < 𝑧))
239237, 2383anbi23d 1441 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → ((𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏) ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)))
240239anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ↔ (𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))))
241 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (𝑏 + (𝑘 · 𝑇)) = (𝑧 + (𝑘 · 𝑇)))
242241eleq1d 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → ((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
243242anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → (((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)))
2442432rexbidv 3197 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)))
245240, 244anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))))
246 oveq2 7354 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → (𝑦𝑏) = (𝑦𝑧))
247246fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → (abs‘(𝑦𝑏)) = (abs‘(𝑦𝑧)))
248247breq2d 5101 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (𝐸 ≤ (abs‘(𝑦𝑏)) ↔ 𝐸 ≤ (abs‘(𝑦𝑧))))
249245, 248imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑧 → ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑏))) ↔ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑧)))))
250 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → (𝑎 ∈ ℝ ↔ 𝑦 ∈ ℝ))
251 breq1 5092 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → (𝑎 < 𝑏𝑦 < 𝑏))
252250, 2513anbi13d 1440 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ↔ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)))
253252anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ↔ (𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏))))
254 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑦 → (𝑎 + (𝑗 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
255254eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
256255anbi1d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → (((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
2572562rexbidv 3197 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
258253, 257anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑦 → (((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))))
259 oveq1 7353 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → (𝑎𝑏) = (𝑦𝑏))
260259fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → (abs‘(𝑎𝑏)) = (abs‘(𝑦𝑏)))
261260breq2d 5101 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑦 → (𝐸 ≤ (abs‘(𝑎𝑏)) ↔ 𝐸 ≤ (abs‘(𝑦𝑏))))
262258, 261imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → ((((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏))) ↔ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑏)))))
263 fourierdlem42.15 . . . . . . . . . . . . . . . . . . 19 (𝜓 ↔ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
264263simprbi 496 . . . . . . . . . . . . . . . . . . . 20 (𝜓 → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
265263biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
266265simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → (𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)))
267266simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝜑)
268267, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝐵 ∈ ℝ)
269268adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℝ)
270267, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝐶 ∈ ℝ)
271270adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐶 ∈ ℝ)
272267, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝐴 ⊆ (𝐵[,]𝐶))
273272sselda 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ (𝐵[,]𝐶))
274273adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ (𝐵[,]𝐶))
275272sselda 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶))
276275adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶))
277269, 271, 274, 276iccsuble 45567 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (𝐶𝐵))
278 fourierdlem42.t . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑇 = (𝐶𝐵)
279277, 278breqtrrdi 5131 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
2802793adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
281280adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
282 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → ¬ 𝑘𝑗)
283 zre 12472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
284283adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑗 ∈ ℝ)
285284ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑗 ∈ ℝ)
286 zre 12472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
287286adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
288287ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑘 ∈ ℝ)
289285, 288ltnled 11260 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → (𝑗 < 𝑘 ↔ ¬ 𝑘𝑗))
290282, 289mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑗 < 𝑘)
29151, 50resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝐶𝐵) ∈ ℝ)
292278, 291eqeltrid 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑇 ∈ ℝ)
293267, 292syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝑇 ∈ ℝ)
294293ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ∈ ℝ)
295287adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℝ)
296284adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℝ)
297295, 296resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘𝑗) ∈ ℝ)
298293adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑇 ∈ ℝ)
299297, 298remulcld 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) ∈ ℝ)
300299adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑘𝑗) · 𝑇) ∈ ℝ)
301266simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏))
302301simp2d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑏 ∈ ℝ)
303302adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑏 ∈ ℝ)
304286adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
305293adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
306304, 305remulcld 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
307306adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑇) ∈ ℝ)
308303, 307readdcld 11141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
309301simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑎 ∈ ℝ)
310309adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑎 ∈ ℝ)
311283adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
312293adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → 𝑇 ∈ ℝ)
313311, 312remulcld 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ) → (𝑗 · 𝑇) ∈ ℝ)
314313adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 · 𝑇) ∈ ℝ)
315310, 314readdcld 11141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
316308, 315resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
317316adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
318293recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑇 ∈ ℂ)
319318mullidd 11130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → (1 · 𝑇) = 𝑇)
320319eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝑇 = (1 · 𝑇))
321320ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 = (1 · 𝑇))
322 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑗 < 𝑘)
323 zltlem1 12525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 < 𝑘𝑗 ≤ (𝑘 − 1)))
324323ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑗 < 𝑘𝑗 ≤ (𝑘 − 1)))
325322, 324mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑗 ≤ (𝑘 − 1))
326284ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 𝑗 ∈ ℝ)
327 peano2rem 11428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ℝ → (𝑘 − 1) ∈ ℝ)
328295, 327syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 − 1) ∈ ℝ)
329328adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑘 − 1) ∈ ℝ)
330 1re 11112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1 ∈ ℝ
331 resubcl 11425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((1 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (1 − 𝑗) ∈ ℝ)
332330, 326, 331sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (1 − 𝑗) ∈ ℝ)
333 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 𝑗 ≤ (𝑘 − 1))
334326, 329, 332, 333leadd1dd 11731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑗 + (1 − 𝑗)) ≤ ((𝑘 − 1) + (1 − 𝑗)))
335 zcn 12473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
336335adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑗 ∈ ℂ)
337 1cnd 11107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 1 ∈ ℂ)
338336, 337pncan3d 11475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 + (1 − 𝑗)) = 1)
339338ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑗 + (1 − 𝑗)) = 1)
340 zcn 12473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
341340adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
342341, 337, 336npncand 11496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 − 1) + (1 − 𝑗)) = (𝑘𝑗))
343342ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → ((𝑘 − 1) + (1 − 𝑗)) = (𝑘𝑗))
344334, 339, 3433brtr3d 5120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 1 ≤ (𝑘𝑗))
345325, 344syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 1 ≤ (𝑘𝑗))
346330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 1 ∈ ℝ)
347297adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑘𝑗) ∈ ℝ)
34850, 51posdifd 11704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝐵 < 𝐶 ↔ 0 < (𝐶𝐵)))
349147, 348mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → 0 < (𝐶𝐵))
350349, 278breqtrrdi 5131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → 0 < 𝑇)
351292, 350elrpd 12931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝑇 ∈ ℝ+)
352267, 351syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑇 ∈ ℝ+)
353352ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ∈ ℝ+)
354346, 347, 353lemul1d 12977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (1 ≤ (𝑘𝑗) ↔ (1 · 𝑇) ≤ ((𝑘𝑗) · 𝑇)))
355345, 354mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (1 · 𝑇) ≤ ((𝑘𝑗) · 𝑇))
356321, 355eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ≤ ((𝑘𝑗) · 𝑇))
357302, 309resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → (𝑏𝑎) ∈ ℝ)
358301simp3d 1144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜓𝑎 < 𝑏)
359309, 302posdifd 11704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜓 → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
360358, 359mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → 0 < (𝑏𝑎))
361357, 360elrpd 12931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (𝑏𝑎) ∈ ℝ+)
362361adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏𝑎) ∈ ℝ+)
363299, 362ltaddrp2d 12968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) < ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
364302recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓𝑏 ∈ ℂ)
365364adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑏 ∈ ℂ)
366306recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℂ)
367366adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑇) ∈ ℂ)
368309recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓𝑎 ∈ ℂ)
369368adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑎 ∈ ℂ)
370313recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → (𝑗 · 𝑇) ∈ ℂ)
371370adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 · 𝑇) ∈ ℂ)
372365, 367, 369, 371addsub4d 11519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘 · 𝑇) − (𝑗 · 𝑇))))
373340ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
374335ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℂ)
375318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑇 ∈ ℂ)
376373, 374, 375subdird 11574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) = ((𝑘 · 𝑇) − (𝑗 · 𝑇)))
377376eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑇) − (𝑗 · 𝑇)) = ((𝑘𝑗) · 𝑇))
378377oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + ((𝑘 · 𝑇) − (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
379372, 378eqtr2d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) = ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
380363, 379breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
381380adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑘𝑗) · 𝑇) < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
382294, 300, 317, 356, 381lelttrd 11271 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
383294, 317ltnled 11260 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑇 < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ↔ ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇))
384382, 383mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
385290, 384syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
3863853adantl3 1169 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑘𝑗) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
387281, 386condan 817 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘𝑗)
388188, 191sselid 3927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
38933, 388eqeltrid 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐸 ∈ ℝ)
390267, 389syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓𝐸 ∈ ℝ)
3913903ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ∈ ℝ)
392391ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ∈ ℝ)
3932933ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℝ)
394393ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ∈ ℝ)
395284, 287resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗𝑘) ∈ ℝ)
396395adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗𝑘) ∈ ℝ)
397396, 298remulcld 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
3983973adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
399398ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
400 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝜑)
401143, 144jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝐵𝐴𝐶𝐴))
402400, 401, 1473jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶))
403 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑑 = 𝐶 → (𝑑𝐴𝐶𝐴))
404403anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → ((𝐵𝐴𝑑𝐴) ↔ (𝐵𝐴𝐶𝐴)))
405 breq2 5093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → (𝐵 < 𝑑𝐵 < 𝐶))
406404, 4053anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = 𝐶 → ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) ↔ (𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶)))
407 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → (𝑑𝐵) = (𝐶𝐵))
408407breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = 𝐶 → (𝐸 ≤ (𝑑𝐵) ↔ 𝐸 ≤ (𝐶𝐵)))
409406, 408imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑑 = 𝐶 → (((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵)) ↔ ((𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶) → 𝐸 ≤ (𝐶𝐵))))
410 simp2l 1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐵𝐴)
411 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = 𝐵 → (𝑐𝐴𝐵𝐴))
412411anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → ((𝑐𝐴𝑑𝐴) ↔ (𝐵𝐴𝑑𝐴)))
413 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → (𝑐 < 𝑑𝐵 < 𝑑))
414412, 4133anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = 𝐵 → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑)))
415 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → (𝑑𝑐) = (𝑑𝐵))
416415breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = 𝐵 → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ (𝑑𝐵)))
417414, 416imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑐 = 𝐵 → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵))))
418188a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑅 ⊆ ℝ)
419 0re 11114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 0 ∈ ℝ
42034eleq2i 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑦𝑅𝑦 ∈ ran (𝐷𝐼))
421420biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦𝑅𝑦 ∈ ran (𝐷𝐼))
422421adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → 𝑦 ∈ ran (𝐷𝐼))
42361adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑𝑦𝑅) → (𝐷𝐼) Fn 𝐼)
424 fvelrnb 6882 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐷𝐼) Fn 𝐼 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
425423, 424syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
426422, 425mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑦𝑅) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦)
427121rpge0d 12938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑𝑥𝐼) → 0 ≤ ((𝐷𝐼)‘𝑥))
4284273adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → 0 ≤ ((𝐷𝐼)‘𝑥))
429 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → ((𝐷𝐼)‘𝑥) = 𝑦)
430428, 429breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → 0 ≤ 𝑦)
4314303exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜑 → (𝑥𝐼 → (((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦)))
432431adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → (𝑥𝐼 → (((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦)))
433432rexlimdv 3131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑦𝑅) → (∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦))
434426, 433mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑𝑦𝑅) → 0 ≤ 𝑦)
435434ralrimiva 3124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝜑 → ∀𝑦𝑅 0 ≤ 𝑦)
436 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
437436ralbidv 3155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥 = 0 → (∀𝑦𝑅 𝑥𝑦 ↔ ∀𝑦𝑅 0 ≤ 𝑦))
438437rspcev 3572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((0 ∈ ℝ ∧ ∀𝑦𝑅 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
439419, 435, 438sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
4404393ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
441 pm3.22 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑐𝐴𝑑𝐴) → (𝑑𝐴𝑐𝐴))
442 opelxp 5650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴) ↔ (𝑑𝐴𝑐𝐴))
443441, 442sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑐𝐴𝑑𝐴) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
4444433ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
44549, 52sstrd 3940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝜑𝐴 ⊆ ℝ)
446445sselda 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑𝑐𝐴) → 𝑐 ∈ ℝ)
447446adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → 𝑐 ∈ ℝ)
4484473adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐 ∈ ℝ)
449 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐 < 𝑑)
450448, 449gtned 11248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑑𝑐)
451450neneqd 2933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ¬ 𝑑 = 𝑐)
452 df-br 5090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑑 I 𝑐 ↔ ⟨𝑑, 𝑐⟩ ∈ I )
453 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑐 ∈ V
454453ideq 5791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑑 I 𝑐𝑑 = 𝑐)
455452, 454bitr3i 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (⟨𝑑, 𝑐⟩ ∈ I ↔ 𝑑 = 𝑐)
456451, 455sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ¬ ⟨𝑑, 𝑐⟩ ∈ I )
457444, 456eldifd 3908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
458457, 48eleqtrrdi 2842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ 𝐼)
459448, 449ltned 11249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐𝑑)
4601413ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (𝐷𝐼) = ((abs ∘ − ) ↾ 𝐼))
461460fveq1d 6824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩))
4624433ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
463 necom 2981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑐𝑑𝑑𝑐)
464463biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝑐𝑑𝑑𝑐)
465464neneqd 2933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑐𝑑 → ¬ 𝑑 = 𝑐)
4664653ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ¬ 𝑑 = 𝑐)
467466, 455sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ¬ ⟨𝑑, 𝑐⟩ ∈ I )
468462, 467eldifd 3908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
469468, 48eleqtrrdi 2842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ 𝐼)
470 fvres 6841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (⟨𝑑, 𝑐⟩ ∈ 𝐼 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩) = ((abs ∘ − )‘⟨𝑑, 𝑐⟩))
471469, 470syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩) = ((abs ∘ − )‘⟨𝑑, 𝑐⟩))
472 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → 𝜑)
473472, 469jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼))
474 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝑥 = ⟨𝑑, 𝑐⟩ → (𝑥𝐼 ↔ ⟨𝑑, 𝑐⟩ ∈ 𝐼))
475474anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = ⟨𝑑, 𝑐⟩ → ((𝜑𝑥𝐼) ↔ (𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼)))
476 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = ⟨𝑑, 𝑐⟩ → (𝑥 ∈ dom − ↔ ⟨𝑑, 𝑐⟩ ∈ dom − ))
477475, 476imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑥 = ⟨𝑑, 𝑐⟩ → (((𝜑𝑥𝐼) → 𝑥 ∈ dom − ) ↔ ((𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼) → ⟨𝑑, 𝑐⟩ ∈ dom − )))
478477, 70vtoclg 3507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (⟨𝑑, 𝑐⟩ ∈ 𝐼 → ((𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼) → ⟨𝑑, 𝑐⟩ ∈ dom − ))
479469, 473, 478sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ dom − )
480 fvco 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((Fun − ∧ ⟨𝑑, 𝑐⟩ ∈ dom − ) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘( − ‘⟨𝑑, 𝑐⟩)))
48167, 479, 480sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘( − ‘⟨𝑑, 𝑐⟩)))
482 df-ov 7349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑑𝑐) = ( − ‘⟨𝑑, 𝑐⟩)
483482eqcomi 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ( − ‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)
484483fveq2i 6825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (abs‘( − ‘⟨𝑑, 𝑐⟩)) = (abs‘(𝑑𝑐))
485481, 484eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
486461, 471, 4853eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
487459, 486syld3an3 1411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
488445sselda 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑𝑑𝐴) → 𝑑 ∈ ℝ)
489488adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → 𝑑 ∈ ℝ)
4904893adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑑 ∈ ℝ)
491448, 490, 449ltled 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐𝑑)
492448, 490, 491abssubge0d 15341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (abs‘(𝑑𝑐)) = (𝑑𝑐))
493487, 492eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐))
494 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑥 = ⟨𝑑, 𝑐⟩ → ((𝐷𝐼)‘𝑥) = ((𝐷𝐼)‘⟨𝑑, 𝑐⟩))
495494eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = ⟨𝑑, 𝑐⟩ → (((𝐷𝐼)‘𝑥) = (𝑑𝑐) ↔ ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)))
496495rspcev 3572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((⟨𝑑, 𝑐⟩ ∈ 𝐼 ∧ ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))
497458, 493, 496syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))
498489, 447resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑑𝑐) ∈ ℝ)
499 elex 3457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑑𝑐) ∈ ℝ → (𝑑𝑐) ∈ V)
500498, 499syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑑𝑐) ∈ V)
5015003adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ V)
502 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝜑)
503 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦 = (𝑑𝑐) → (𝑦 ∈ ran (𝐷𝐼) ↔ (𝑑𝑐) ∈ ran (𝐷𝐼)))
504 eqeq2 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑦 = (𝑑𝑐) → (((𝐷𝐼)‘𝑥) = 𝑦 ↔ ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
505504rexbidv 3156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦 = (𝑑𝑐) → (∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦 ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
506503, 505bibi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑦 = (𝑑𝑐) → ((𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦) ↔ ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))))
507506imbi2d 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑦 = (𝑑𝑐) → ((𝜑 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦)) ↔ (𝜑 → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))))
50861, 424syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝜑 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
509507, 508vtoclg 3507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑑𝑐) ∈ V → (𝜑 → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))))
510501, 502, 509sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
511497, 510mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ ran (𝐷𝐼))
512511, 34eleqtrrdi 2842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ 𝑅)
513 infrelb 12107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦 ∧ (𝑑𝑐) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑑𝑐))
514418, 440, 512, 513syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → inf(𝑅, ℝ, < ) ≤ (𝑑𝑐))
51533, 514eqbrtrid 5124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐))
516417, 515vtoclg 3507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐵𝐴 → ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵)))
517410, 516mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵))
518409, 517vtoclg 3507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐶𝐴 → ((𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶) → 𝐸 ≤ (𝐶𝐵)))
519144, 402, 518sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐸 ≤ (𝐶𝐵))
520519, 278breqtrrdi 5131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐸𝑇)
521267, 520syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓𝐸𝑇)
5225213ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸𝑇)
523522ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸𝑇)
524364adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑘 ∈ ℤ) → 𝑏 ∈ ℂ)
525524, 366pncan2d 11474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) = (𝑘 · 𝑇))
526525oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑘 ∈ ℤ) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) = ((𝑘 · 𝑇) / 𝑇))
527340adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
528318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑇 ∈ ℂ)
529419a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝜑 → 0 ∈ ℝ)
530529, 350gtned 11248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑𝑇 ≠ 0)
531267, 530syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓𝑇 ≠ 0)
532531adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑇 ≠ 0)
533527, 528, 532divcan4d 11903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑘 ∈ ℤ) → ((𝑘 · 𝑇) / 𝑇) = 𝑘)
534526, 533eqtr2d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑘 ∈ ℤ) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
535534adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
536535adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
537 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑏 + (𝑘 · 𝑇)) − 𝑏))
538537oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
539538adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
540368adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑎 ∈ ℂ)
541364adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑏 ∈ ℂ)
542540, 370, 541addsubd 11493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑎𝑏) + (𝑗 · 𝑇)))
543540, 541subcld 11472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → (𝑎𝑏) ∈ ℂ)
544543, 370addcomd 11315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) + (𝑗 · 𝑇)) = ((𝑗 · 𝑇) + (𝑎𝑏)))
545542, 544eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑗 · 𝑇) + (𝑎𝑏)))
546545oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑗 · 𝑇) + (𝑎𝑏)) / 𝑇))
547318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → 𝑇 ∈ ℂ)
548531adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → 𝑇 ≠ 0)
549370, 543, 547, 548divdird 11935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑗 · 𝑇) + (𝑎𝑏)) / 𝑇) = (((𝑗 · 𝑇) / 𝑇) + ((𝑎𝑏) / 𝑇)))
550335adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → 𝑗 ∈ ℂ)
551550, 547, 548divcan4d 11903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → ((𝑗 · 𝑇) / 𝑇) = 𝑗)
552551oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑗 · 𝑇) / 𝑇) + ((𝑎𝑏) / 𝑇)) = (𝑗 + ((𝑎𝑏) / 𝑇)))
553546, 549, 5523eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
554553adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
555554adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
556536, 539, 5553eqtr2d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 = (𝑗 + ((𝑎𝑏) / 𝑇)))
557309, 302resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓 → (𝑎𝑏) ∈ ℝ)
558309, 302sublt0d 11743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜓 → ((𝑎𝑏) < 0 ↔ 𝑎 < 𝑏))
559358, 558mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓 → (𝑎𝑏) < 0)
560557, 352, 559divlt0gt0d 45335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓 → ((𝑎𝑏) / 𝑇) < 0)
561560adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) < 0)
562335subidd 11460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑗 ∈ ℤ → (𝑗𝑗) = 0)
563562eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑗 ∈ ℤ → 0 = (𝑗𝑗))
564563adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → 0 = (𝑗𝑗))
565561, 564breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) < (𝑗𝑗))
566557, 293, 531redivcld 11949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓 → ((𝑎𝑏) / 𝑇) ∈ ℝ)
567566adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) ∈ ℝ)
568311, 567, 311ltaddsub2d 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → ((𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗 ↔ ((𝑎𝑏) / 𝑇) < (𝑗𝑗)))
569565, 568mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓𝑗 ∈ ℤ) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
570569adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
571570adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
572556, 571eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 < 𝑗)
573320ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 = (1 · 𝑇))
574 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 < 𝑗)
575 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ∈ ℤ)
576 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑗 ∈ ℤ)
577 zltp1le 12522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑘 < 𝑗 ↔ (𝑘 + 1) ≤ 𝑗))
578575, 576, 577syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → (𝑘 < 𝑗 ↔ (𝑘 + 1) ≤ 𝑗))
579574, 578mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → (𝑘 + 1) ≤ 𝑗)
580286ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ∈ ℝ)
581330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 1 ∈ ℝ)
582283ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑗 ∈ ℝ)
583580, 581, 582leaddsub2d 11719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → ((𝑘 + 1) ≤ 𝑗 ↔ 1 ≤ (𝑗𝑘)))
584579, 583mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 1 ≤ (𝑗𝑘))
585584adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 1 ≤ (𝑗𝑘))
586330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 1 ∈ ℝ)
587395ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (𝑗𝑘) ∈ ℝ)
588352ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 ∈ ℝ+)
589586, 587, 588lemul1d 12977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (1 ≤ (𝑗𝑘) ↔ (1 · 𝑇) ≤ ((𝑗𝑘) · 𝑇)))
590585, 589mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (1 · 𝑇) ≤ ((𝑗𝑘) · 𝑇))
591573, 590eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
592572, 591syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
593592adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
5945933adantll3 45087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
595392, 394, 399, 523, 594letrd 11270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑗𝑘) · 𝑇))
596 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))))
597596oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
598597adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
599267, 445syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓𝐴 ⊆ ℝ)
600599sselda 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
601600adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
602601recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℂ)
603602subidd 11460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) = 0)
604603oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
605604adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
606598, 605eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
6076063adantl2 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
608607adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
609374, 373subcld 11472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗𝑘) ∈ ℂ)
610609, 375mulcld 11132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑗𝑘) · 𝑇) ∈ ℂ)
611610addlidd 11314 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
6126113adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
613612ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
614608, 613eqtr2d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑗𝑘) · 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
615595, 614breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
616615adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
617391ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ∈ ℝ)
618599sselda 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
619618adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
620601, 619resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
6216203adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
622621ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
623621, 398readdcld 11141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
624623ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
625267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓𝑘𝑗) → 𝜑)
6266253ad2antl1 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → 𝜑)
627626ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝜑)
628 simpl3 1194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
629628ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
630 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)))
631619ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
632601ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
633631, 632lenltd 11259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))))
634630, 633mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
635 eqcom 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) ↔ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
636635notbii 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
637636biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
638637adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
639 ioran 985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (¬ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))) ↔ (¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∧ ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))))
640634, 638, 639sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))))
641632, 631leloed 11256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)) ↔ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))))
642640, 641mtbird 325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
6436423adantll2 45086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
644643adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
645619adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
6466453adantl2 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
647646ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
648601adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
6496483adantl2 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
650649ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
651647, 650ltnled 11260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇))))
652644, 651mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)))
653 simp2l 1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
654 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐𝐴 ↔ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
655654anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
656 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐 < (𝑏 + (𝑘 · 𝑇)) ↔ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))))
657655, 6563anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) ↔ (𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)))))
658 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑏 + (𝑘 · 𝑇)) − 𝑐) = ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
659658breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐) ↔ 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
660657, 659imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)) ↔ ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))))
661 simp2r 1201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)
662 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑑𝐴 ↔ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
663662anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → ((𝑐𝐴𝑑𝐴) ↔ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
664 breq2 5093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑐 < 𝑑𝑐 < (𝑏 + (𝑘 · 𝑇))))
665663, 6643anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇)))))
666 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑑𝑐) = ((𝑏 + (𝑘 · 𝑇)) − 𝑐))
667666breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)))
668665, 667imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐))))
669668, 515vtoclg 3507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)))
670661, 669mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐))
671660, 670vtoclg 3507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
672653, 671mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
673627, 629, 652, 672syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
674395ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → (𝑗𝑘) ∈ ℝ)
675293ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 𝑇 ∈ ℝ)
676 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑘𝑗)
677283ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ)
678286ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ)
679677, 678subge0d 11707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → (0 ≤ (𝑗𝑘) ↔ 𝑘𝑗))
680676, 679mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 0 ≤ (𝑗𝑘))
681680adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ (𝑗𝑘))
682352rpge0d 12938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → 0 ≤ 𝑇)
683682ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ 𝑇)
684674, 675, 681, 683mulge0d 11694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ ((𝑗𝑘) · 𝑇))
6856843adantl3 1169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → 0 ≤ ((𝑗𝑘) · 𝑇))
686621adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
687398adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
688686, 687addge01d 11705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (0 ≤ ((𝑗𝑘) · 𝑇) ↔ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇))))
689685, 688mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
690689ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
691617, 622, 624, 673, 690letrd 11270 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
692616, 691pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
693372, 378eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
694693oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) + ((𝑗𝑘) · 𝑇)))
695365, 369subcld 11472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏𝑎) ∈ ℂ)
696373, 374subcld 11472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘𝑗) ∈ ℂ)
697696, 375mulcld 11132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) ∈ ℂ)
698695, 697, 610addassd 11134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) + ((𝑗𝑘) · 𝑇)) = ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))))
699341, 336, 336, 341subadd4b 45332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑗) + (𝑗𝑘)) = ((𝑘𝑘) + (𝑗𝑗)))
700699adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) + (𝑗𝑘)) = ((𝑘𝑘) + (𝑗𝑗)))
701700oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) + (𝑗𝑘)) · 𝑇) = (((𝑘𝑘) + (𝑗𝑗)) · 𝑇))
702696, 609, 375adddird 11137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) + (𝑗𝑘)) · 𝑇) = (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇)))
703340subidd 11460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ ℤ → (𝑘𝑘) = 0)
704703adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘𝑘) = 0)
705562adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗𝑗) = 0)
706704, 705oveq12d 7364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑘) + (𝑗𝑗)) = (0 + 0))
707 00id 11288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (0 + 0) = 0
708706, 707eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑘) + (𝑗𝑗)) = 0)
709708oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑘𝑘) + (𝑗𝑗)) · 𝑇) = (0 · 𝑇))
710709adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑘) + (𝑗𝑗)) · 𝑇) = (0 · 𝑇))
711701, 702, 7103eqtr3d 2774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇)) = (0 · 𝑇))
712711oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))) = ((𝑏𝑎) + (0 · 𝑇)))
713318mul02d 11311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (0 · 𝑇) = 0)
714713oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → ((𝑏𝑎) + (0 · 𝑇)) = ((𝑏𝑎) + 0))
715364, 368subcld 11472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (𝑏𝑎) ∈ ℂ)
716715addridd 11313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → ((𝑏𝑎) + 0) = (𝑏𝑎))
717714, 716eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓 → ((𝑏𝑎) + (0 · 𝑇)) = (𝑏𝑎))
718717adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (0 · 𝑇)) = (𝑏𝑎))
719712, 718eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))) = (𝑏𝑎))
720694, 698, 7193eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
7217203adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
722721ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
723692, 722breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (𝑏𝑎))
724 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
725 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)))
7266013adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
727726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7286193adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
729728adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
730727, 729ltnled 11260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ↔ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))))
731725, 730mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
732731adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
7335353adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
734733adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
7356003adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7363023ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑏 ∈ ℝ)
737735, 736resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) ∈ ℝ)
7382933ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑇 ∈ ℝ)
7395313ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑇 ≠ 0)
740737, 738, 739redivcld 11949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7417403adant3l 1181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓𝑘 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7427413adant2l 1179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
743742adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7446183adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
7453023ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑏 ∈ ℝ)
746744, 745resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) ∈ ℝ)
7472933ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑇 ∈ ℝ)
7485313ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑇 ≠ 0)
749746, 747, 748redivcld 11949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7507493adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7517503adant2r 1180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
752751adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7532843ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑗 ∈ ℝ)
754753adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑗 ∈ ℝ)
755726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7563023ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑏 ∈ ℝ)
757756adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑏 ∈ ℝ)
758755, 757resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) ∈ ℝ)
759728adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
760759, 757resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) ∈ ℝ)
7613523ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℝ+)
762761adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑇 ∈ ℝ+)
763601adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
764619adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
765302ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑏 ∈ ℝ)
766 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
767763, 764, 765, 766ltsub1dd 11729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) < ((𝑎 + (𝑗 · 𝑇)) − 𝑏))
7687673adantl2 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) < ((𝑎 + (𝑗 · 𝑇)) − 𝑏))
769758, 760, 762, 768ltdiv1dd 12991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) < (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇))
770554, 570eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
7717703adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
772771adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
773743, 752, 754, 769, 772lttrd 11274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
774734, 773eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 < 𝑗)
775774adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 < 𝑗)
776732, 775syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝑘 < 𝑗)
777391adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ∈ ℝ)
778393adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ∈ ℝ)
779623adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
780522adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸𝑇)
781 peano2rem 11428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → (𝑗 − 1) ∈ ℝ)
782753, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑗 − 1) ∈ ℝ)
7832873ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘 ∈ ℝ)
784782, 783resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗 − 1) − 𝑘) ∈ ℝ)
785784, 393remulcld 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ∈ ℝ)
786785adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑗 − 1) − 𝑘) · 𝑇) ∈ ℝ)
787753adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℝ)
788330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℝ)
789787, 788resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
790286ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
7917903ad2antl2 1187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
792789, 791resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → ((𝑗 − 1) − 𝑘) ∈ ℝ)
793682adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 < (𝑗 − 1)) → 0 ≤ 𝑇)
7947933ad2antl1 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 0 ≤ 𝑇)
795283ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℝ)
796330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℝ)
797795, 796resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
798 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 < (𝑗 − 1))
799 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℤ)
800 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℤ)
801 1zzd 12503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℤ)
802800, 801zsubcld 12582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℤ)
803 zltlem1 12525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑘 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) → (𝑘 < (𝑗 − 1) ↔ 𝑘 ≤ ((𝑗 − 1) − 1)))
804799, 802, 803syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑘 < (𝑗 − 1) ↔ 𝑘 ≤ ((𝑗 − 1) − 1)))
805798, 804mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ≤ ((𝑗 − 1) − 1))
806790, 797, 796, 805lesubd 11721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ≤ ((𝑗 − 1) − 𝑘))
8078063ad2antl2 1187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 1 ≤ ((𝑗 − 1) − 𝑘))
808778, 792, 794, 807lemulge12d 12060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ≤ (((𝑗 − 1) − 𝑘) · 𝑇))
809336, 337, 341sub32d 11504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑗 − 1) − 𝑘) = ((𝑗𝑘) − 1))
810809oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) − 1) · 𝑇))
811810adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) − 1) · 𝑇))
812 1cnd 11107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 1 ∈ ℂ)
813609, 812, 375subdird 11574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗𝑘) − 1) · 𝑇) = (((𝑗𝑘) · 𝑇) − (1 · 𝑇)))
814319oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝜓 → (((𝑗𝑘) · 𝑇) − (1 · 𝑇)) = (((𝑗𝑘) · 𝑇) − 𝑇))
815814adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗𝑘) · 𝑇) − (1 · 𝑇)) = (((𝑗𝑘) · 𝑇) − 𝑇))
816811, 813, 8153eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) · 𝑇) − 𝑇))
8178163adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) · 𝑇) − 𝑇))
818728, 726resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ∈ ℝ)
819269, 271, 276, 274iccsuble 45567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ (𝐶𝐵))
820819, 278breqtrrdi 5131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ 𝑇)
8218203adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ 𝑇)
822818, 393, 398, 821lesub2dd 11734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − 𝑇) ≤ (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))))
823817, 822eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))))
8246103adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗𝑘) · 𝑇) ∈ ℂ)
825728recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
8266023adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℂ)
827824, 825, 826subsub2d 11501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))) = (((𝑗𝑘) · 𝑇) + ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
828621recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℂ)
829824, 828addcomd 11315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) + ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
830827, 829eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
831823, 830breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
832831adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
833778, 786, 779, 808, 832letrd 11270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
834777, 778, 779, 780, 833letrd 11270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
835721adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
836834, 835breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
837836adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
838837adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
839 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
840 simpll2 1214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ))
841 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 < 𝑗)
842 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → ¬ 𝑘 < (𝑗 − 1))
843581, 582, 580, 584lesubd 11721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ≤ (𝑗 − 1))
8448433adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ≤ (𝑗 − 1))
845 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → ¬ 𝑘 < (𝑗 − 1))
846284, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 − 1) ∈ ℝ)
847846adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
848286ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
849847, 848lenltd 11259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → ((𝑗 − 1) ≤ 𝑘 ↔ ¬ 𝑘 < (𝑗 − 1)))
850845, 849mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ≤ 𝑘)
8518503adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ≤ 𝑘)
8525803adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
8538463ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
854852, 853letri3d 11255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑘 = (𝑗 − 1) ↔ (𝑘 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑘)))
855844, 851, 854mpbir2and 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
856840, 841, 842, 855syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
857856adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
858 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝜓)
859 simpl2l 1227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝑗 ∈ ℤ)
860 simpl3l 1229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
861 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 = (𝑗 − 1) → (𝑘 · 𝑇) = ((𝑗 − 1) · 𝑇))
862861oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 = (𝑗 − 1) → (𝑏 + (𝑘 · 𝑇)) = (𝑏 + ((𝑗 − 1) · 𝑇)))
863862eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 = (𝑗 − 1) → (𝑏 + ((𝑗 − 1) · 𝑇)) = (𝑏 + (𝑘 · 𝑇)))
864863adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) = (𝑏 + (𝑘 · 𝑇)))
865 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)
866864, 865eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
867866adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
8688673ad2antl3 1188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
869860, 868jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴))
870 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
8718703adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
872744adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
8732703ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℝ)
874873adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐶 ∈ ℝ)
875268adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐵 ∈ ℝ)
876270adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℝ)
877 elicc2 13311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)))
878875, 876, 877syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)))
879275, 878mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶))
880879simp3d 1144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
8818803adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
882881adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
883 nne 2932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝐶 ≠ (𝑎 + (𝑗 · 𝑇)) ↔ 𝐶 = (𝑎 + (𝑗 · 𝑇)))
884540, 370pncand 11473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = 𝑎)
885884eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑎 = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
886885adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
887 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐶 = (𝑎 + (𝑗 · 𝑇)) → (𝐶 − (𝑗 · 𝑇)) = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
888887eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐶 = (𝑎 + (𝑗 · 𝑇)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = (𝐶 − (𝑗 · 𝑇)))
889888adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = (𝐶 − (𝑗 · 𝑇)))
890278oveq2i 7357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝐵 + 𝑇) = (𝐵 + (𝐶𝐵))
891267, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜓𝐵 ∈ ℂ)
892267, 160syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜓𝐶 ∈ ℂ)
893891, 892pncan3d 11475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝜓 → (𝐵 + (𝐶𝐵)) = 𝐶)
894890, 893eqtr2id 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝜓𝐶 = (𝐵 + 𝑇))
895894oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝜓 → (𝐶 − (𝑗 · 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
896895adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐶 − (𝑗 · 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
897891adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → 𝐵 ∈ ℂ)
898897, 370, 547subsub3d 11502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐵 − ((𝑗 · 𝑇) − 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
899550, 547mulsubfacd 11578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → ((𝑗 · 𝑇) − 𝑇) = ((𝑗 − 1) · 𝑇))
900899oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐵 − ((𝑗 · 𝑇) − 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
901896, 898, 9003eqtr2d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → (𝐶 − (𝑗 · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
902901adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → (𝐶 − (𝑗 · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
903886, 889, 9023eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
9049033adantl3 1169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
905904adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
906 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
907906eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (𝐵 − ((𝑗 − 1) · 𝑇)) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)))
908907ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → (𝐵 − ((𝑗 − 1) · 𝑇)) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)))
909364ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝑏 ∈ ℂ)
910 1cnd 11107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → 1 ∈ ℂ)
911550, 910subcld 11472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝑗 − 1) ∈ ℂ)
912911, 547mulcld 11132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → ((𝑗 − 1) · 𝑇) ∈ ℂ)
913912adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑗 − 1) · 𝑇) ∈ ℂ)
914909, 913pncand 11473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
9159143adantl3 1169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
916915adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
917905, 908, 9163eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = 𝑏)
918883, 917sylan2b 594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ ¬ 𝐶 ≠ (𝑎 + (𝑗 · 𝑇))) → 𝑎 = 𝑏)
919309, 358ltned 11249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝜓𝑎𝑏)
920919neneqd 2933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜓 → ¬ 𝑎 = 𝑏)
9219203ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ¬ 𝑎 = 𝑏)
922921ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ ¬ 𝐶 ≠ (𝑎 + (𝑗 · 𝑇))) → ¬ 𝑎 = 𝑏)
923918, 922condan 817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐶 ≠ (𝑎 + (𝑗 · 𝑇)))
924872, 874, 882, 923leneltd 11267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
925871, 924sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
926267ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝜑)
927 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
928926, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐶𝐴)
929 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
930 simp2l 1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
931654anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑐𝐴𝐶𝐴) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴)))
932 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐 < 𝐶 ↔ (𝑎 + (𝑗 · 𝑇)) < 𝐶))
933931, 9323anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) ↔ (𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶)))
934 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐶𝑐) = (𝐶 − (𝑎 + (𝑗 · 𝑇))))
935934breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐸 ≤ (𝐶𝑐) ↔ 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇)))))
936933, 935imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐)) ↔ ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))))
937 simp2r 1201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐶𝐴)
938403anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → ((𝑐𝐴𝑑𝐴) ↔ (𝑐𝐴𝐶𝐴)))
939 breq2 5093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → (𝑐 < 𝑑𝑐 < 𝐶))
940938, 9393anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑑 = 𝐶 → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶)))
941 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → (𝑑𝑐) = (𝐶𝑐))
942941breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑑 = 𝐶 → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ (𝐶𝑐)))
943940, 942imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑑 = 𝐶 → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐))))
944943, 515vtoclg 3507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐶𝐴 → ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐)))
945937, 944mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐))
946936, 945vtoclg 3507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇)))))
947930, 946mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
948926, 927, 928, 929, 947syl121anc 1377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
949948adantlrr 721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
9509493adantl2 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
951950adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
952892adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℂ)
953599sselda 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
954953recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
955952, 954npcand 11476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) = 𝐶)
956955eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐶 = ((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))))
957956oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
958957adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
9599583adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
960959adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
961 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) = (𝐶𝐵))
962961oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → ((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) = ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))))
963962oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
964963adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
965278eqcomi 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐶𝐵) = 𝑇
966965oveq1i 7356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) = (𝑇 + (𝑏 + ((𝑗 − 1) · 𝑇)))
967966a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) = (𝑇 + (𝑏 + ((𝑗 − 1) · 𝑇))))
968318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝑇 ∈ ℂ)
969968, 954addcomd 11315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑇 + (𝑏 + ((𝑗 − 1) · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇))
970967, 969eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇))
971970oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
972971adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
9739723adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
974973adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
975954adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
9769753adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
977976adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
9783183ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℂ)
979978adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝑇 ∈ ℂ)
980618adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
981980recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
9829813adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
983982adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
984977, 979, 983addsubd 11493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
985974, 984eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
986960, 964, 9853eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
987986adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
988951, 987breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
989925, 988mpdan 687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
990 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝜓)
991 simpl3r 1230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
992 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵)
9932683ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 ∈ ℝ)
9949533adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
995272sselda 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ (𝐵[,]𝐶))
996268adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐵 ∈ ℝ)
997270adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℝ)
998 elicc2 13311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ≤ 𝐶)))
999996, 997, 998syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ≤ 𝐶)))
1000995, 999mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ≤ 𝐶))
10011000simp2d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)))
100210013adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)))
1003 neqne 2936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (𝑏 + ((𝑗 − 1) · 𝑇)) ≠ 𝐵)
100410033ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ≠ 𝐵)
1005993, 994, 1002, 1004leneltd 11267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))
1006990, 991, 992, 1005syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))
10073903ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐸 ∈ ℝ)
10081007adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ∈ ℝ)
1009953adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
101010093adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
10112683ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℝ)
10121010, 1011resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ∈ ℝ)
10131012adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ∈ ℝ)
10141009, 980resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
1015293adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℝ)
10161014, 1015readdcld 11141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) ∈ ℝ)
101710163adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) ∈ ℝ)
10181017adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) ∈ ℝ)
1019267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝜑)
102010193ad2antl1 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝜑)
10211020, 143syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐵𝐴)
1022 simpl3r 1230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
1023 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))
1024 simp2r 1201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
1025 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝑑𝐴 ↔ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴))
10261025anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → ((𝐵𝐴𝑑𝐴) ↔ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)))
1027 breq2 5093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝐵 < 𝑑𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))))
10281026, 10273anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) ↔ (𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))))
1029 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝑑𝐵) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))
10301029breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝐸 ≤ (𝑑𝐵) ↔ 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵)))
10311028, 1030imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵)) ↔ ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))))
10321031, 517vtoclg 3507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵)))
10331024, 1032mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))
10341020, 1021, 1022, 1023, 1033syl121anc 1377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))
1035268adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℝ)
1036980, 1035resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − 𝐵) ∈ ℝ)
1037965, 1015eqeltrid 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝐶𝐵) ∈ ℝ)
1038270adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐶 ∈ ℝ)
1039880adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
1040980, 1038, 1035, 1039lesub1dd 11733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − 𝐵) ≤ (𝐶𝐵))
10411036, 1037, 1014, 1040leadd2dd 11732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑎 + (𝑗 · 𝑇)) − 𝐵)) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝐶𝐵)))
1042975, 981npcand 11476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))) = (𝑏 + ((𝑗 − 1) · 𝑇)))
10431042eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))))
10441043oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) = ((((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))) − 𝐵))
10451014recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℂ)
1046891adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℂ)
10471045, 981, 1046addsubassd 11492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))) − 𝐵) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑎 + (𝑗 · 𝑇)) − 𝐵)))
10481044, 1047eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑎 + (𝑗 · 𝑇)) − 𝐵)))
1049278oveq2i 7357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝐶𝐵))
10501049a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝐶𝐵)))
10511041, 1048, 10503brtr4d 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
105210513adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10531052adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10541008, 1013, 1018, 1034, 1053letrd 11270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10551006, 1054syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
1056989, 1055pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
1057858, 859, 869, 1056syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
1058720eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏𝑎) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
10591058adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 = (𝑗 − 1)) → (𝑏𝑎) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
1060862oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 = (𝑗 − 1) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
10611060adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
1062 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 = (𝑗 − 1) → (𝑗𝑘) = (𝑗 − (𝑗 − 1)))
10631062oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 = (𝑗 − 1) → ((𝑗𝑘) · 𝑇) = ((𝑗 − (𝑗 − 1)) · 𝑇))
10641063adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑗𝑘) · 𝑇) = ((𝑗 − (𝑗 − 1)) · 𝑇))
1065 1cnd 11107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑗 ∈ ℤ → 1 ∈ ℂ)
1066335, 1065nncand 11477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℤ → (𝑗 − (𝑗 − 1)) = 1)
10671066oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑗 ∈ ℤ → ((𝑗 − (𝑗 − 1)) · 𝑇) = (1 · 𝑇))
10681067ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑗 − (𝑗 − 1)) · 𝑇) = (1 · 𝑇))
1069319ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → (1 · 𝑇) = 𝑇)
10701064, 1068, 10693eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑗𝑘) · 𝑇) = 𝑇)
10711061, 1070oveq12d 7364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10721071adantlrr 721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10731059, 1072eqtr2d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (𝑏𝑎))
107410733adantl3 1169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (𝑏𝑎))
10751057, 1074breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
1076839, 857, 1075syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
1077838, 1076pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝐸 ≤ (𝑏𝑎))
1078724, 776, 732, 1077syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (𝑏𝑎))
1079723, 1078pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → 𝐸 ≤ (𝑏𝑎))
1080387, 1079mpdan 687 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (𝑏𝑎))
1081309, 302, 358ltled 11261 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜓𝑎𝑏)
1082309, 302, 1081abssuble0d 15342 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜓 → (abs‘(𝑎𝑏)) = (𝑏𝑎))
10831082eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜓 → (𝑏𝑎) = (abs‘(𝑎𝑏)))
108410833ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏𝑎) = (abs‘(𝑎𝑏)))
10851080, 1084breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏)))
108610853exp 1119 . . . . . . . . . . . . . . . . . . . . 21 (𝜓 → ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝐸 ≤ (abs‘(𝑎𝑏)))))
10871086rexlimdvv 3188 . . . . . . . . . . . . . . . . . . . 20 (𝜓 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝐸 ≤ (abs‘(𝑎𝑏))))
1088264, 1087mpd 15 . . . . . . . . . . . . . . . . . . 19 (𝜓𝐸 ≤ (abs‘(𝑎𝑏)))
1089263, 1088sylbir 235 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏)))
1090262, 1089chvarvv 1990 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑏)))
1091249, 1090chvarvv 1990 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1092229, 235, 236, 1091syl21anc 837 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1093 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → ¬ 𝑦 < 𝑧)
1094 simpl3 1194 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑦𝑧)
1095 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑦 ∈ ℝ)
1096 simpl2 1193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑧 ∈ ℝ)
10971095, 1096lttri2d 11252 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → (𝑦𝑧 ↔ (𝑦 < 𝑧𝑧 < 𝑦)))
10981094, 1097mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → (𝑦 < 𝑧𝑧 < 𝑦))
10991098ord 864 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → (¬ 𝑦 < 𝑧𝑧 < 𝑦))
11001093, 1099mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑧 < 𝑦)
11011100adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ¬ 𝑦 < 𝑧) → 𝑧 < 𝑦)
11021101adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑦 < 𝑧) → 𝑧 < 𝑦)
1103 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → 𝜑)
1104 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → 𝑧 ∈ ℝ)
1105 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → 𝑦 ∈ ℝ)
1106 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → 𝑧 < 𝑦)
11071104, 1105, 11063jca 1128 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))
11081107adantll 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑧 < 𝑦) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))
11091108adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))
1110 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = 𝑖 → (𝑗 · 𝑇) = (𝑖 · 𝑇))
11111110oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑖 → (𝑦 + (𝑗 · 𝑇)) = (𝑦 + (𝑖 · 𝑇)))
11121111eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑖 → ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑖 · 𝑇)) ∈ 𝐴))
11131112anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 𝑖 → (((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)))
1114 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 = 𝑙 → (𝑘 · 𝑇) = (𝑙 · 𝑇))
11151114oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑇)) = (𝑧 + (𝑙 · 𝑇)))
11161115eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑙 → ((𝑧 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴))
11171116anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑙 → (((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴)))
11181113, 1117cbvrex2vw 3215 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴))
1119 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝑘 → (𝑖 · 𝑇) = (𝑘 · 𝑇))
11201119oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑘 → (𝑦 + (𝑖 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
11211120eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 = 𝑘 → ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11221121anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑘 → (((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴)))
1123 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑗 → (𝑙 · 𝑇) = (𝑗 · 𝑇))
11241123oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑙 = 𝑗 → (𝑧 + (𝑙 · 𝑇)) = (𝑧 + (𝑗 · 𝑇)))
11251124eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑙 = 𝑗 → ((𝑧 + (𝑙 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
11261125anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = 𝑗 → (((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴)))
11271122, 1126cbvrex2vw 3215 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ∃𝑘 ∈ ℤ ∃𝑗 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
1128 rexcom 3261 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑘 ∈ ℤ ∃𝑗 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
1129 ancom 460 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴) ↔ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
113011292rexbii 3108 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11311127, 1128, 11303bitri 297 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11321118, 1131sylbb 219 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11331132ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
1134 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑦 → (𝑏 ∈ ℝ ↔ 𝑦 ∈ ℝ))
1135 breq2 5093 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑦 → (𝑧 < 𝑏𝑧 < 𝑦))
11361134, 11353anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑦 → ((𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏) ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)))
11371136anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → ((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ↔ (𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))))
1138 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 = 𝑦 → (𝑏 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
11391138eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑦 → ((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11401139anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑦 → (((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)))
114111402rexbidv 3197 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)))
11421137, 1141anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))))
1143 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑦 → (𝑧𝑏) = (𝑧𝑦))
11441143fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → (abs‘(𝑧𝑏)) = (abs‘(𝑧𝑦)))
11451144breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → (𝐸 ≤ (abs‘(𝑧𝑏)) ↔ 𝐸 ≤ (abs‘(𝑧𝑦))))
11461142, 1145imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑦 → ((((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑏))) ↔ (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑦)))))
1147 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → (𝑎 ∈ ℝ ↔ 𝑧 ∈ ℝ))
1148 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → (𝑎 < 𝑏𝑧 < 𝑏))
11491147, 11483anbi13d 1440 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑧 → ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ↔ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)))
11501149anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑧 → ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ↔ (𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏))))
1151 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑧 → (𝑎 + (𝑗 · 𝑇)) = (𝑧 + (𝑗 · 𝑇)))
11521151eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
11531152anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑧 → (((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
115411532rexbidv 3197 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑧 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
11551150, 1154anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑧 → (((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))))
1156 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑧 → (𝑎𝑏) = (𝑧𝑏))
11571156fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑧 → (abs‘(𝑎𝑏)) = (abs‘(𝑧𝑏)))
11581157breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑧 → (𝐸 ≤ (abs‘(𝑎𝑏)) ↔ 𝐸 ≤ (abs‘(𝑧𝑏))))
11591155, 1158imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑧 → ((((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏))) ↔ (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑏)))))
11601159, 1089chvarvv 1990 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑏)))
11611146, 1160chvarvv 1990 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑦)))
11621103, 1109, 1133, 1161syl21anc 837 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → 𝐸 ≤ (abs‘(𝑧𝑦)))
1163 recn 11096 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
11641163adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
1165 recn 11096 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
11661165adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
11671164, 1166abssubd 15363 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
11681167adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
11691168ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
11701162, 1169breqtrd 5115 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → 𝐸 ≤ (abs‘(𝑦𝑧)))
11711170ex 412 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑧 < 𝑦𝐸 ≤ (abs‘(𝑦𝑧))))
117211713adantlr3 45085 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑧 < 𝑦𝐸 ≤ (abs‘(𝑦𝑧))))
11731172adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑦 < 𝑧) → (𝑧 < 𝑦𝐸 ≤ (abs‘(𝑦𝑧))))
11741102, 1173mpd 15 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑦 < 𝑧) → 𝐸 ≤ (abs‘(𝑦𝑧)))
11751092, 1174pm2.61dan 812 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1176196, 204, 228, 1175syl21anc 837 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1177389ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝐸 ∈ ℝ)
1178198, 201resubcld 11545 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → (𝑦𝑧) ∈ ℝ)
11791178recnd 11140 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → (𝑦𝑧) ∈ ℂ)
11801179abscld 15346 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → (abs‘(𝑦𝑧)) ∈ ℝ)
11811180adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → (abs‘(𝑦𝑧)) ∈ ℝ)
11821177, 1181lenltd 11259 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → (𝐸 ≤ (abs‘(𝑦𝑧)) ↔ ¬ (abs‘(𝑦𝑧)) < 𝐸))
11831176, 1182mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → ¬ (abs‘(𝑦𝑧)) < 𝐸)
1184 nan 829 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸)) ↔ (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → ¬ (abs‘(𝑦𝑧)) < 𝐸))
11851183, 1184mpbir 231 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
11861185ralrimivva 3175 . . . . . . . . . 10 (𝜑 → ∀𝑦𝐻𝑧𝐻 ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
1187 ralnex2 3112 . . . . . . . . . 10 (∀𝑦𝐻𝑧𝐻 ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸) ↔ ¬ ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
11881186, 1187sylib 218 . . . . . . . . 9 (𝜑 → ¬ ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
11891188ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → ¬ ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
1190195, 1189pm2.65da 816 . . . . . . 7 ((𝜑𝑥 𝐾) → ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐻))
11911190intnanrd 489 . . . . . 6 ((𝜑𝑥 𝐾) → ¬ (𝑥 ∈ ((limPt‘𝐽)‘𝐻) ∧ 𝑥 ∈ (𝑋[,]𝑌)))
1192 elin 3913 . . . . . 6 (𝑥 ∈ (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)) ↔ (𝑥 ∈ ((limPt‘𝐽)‘𝐻) ∧ 𝑥 ∈ (𝑋[,]𝑌)))
11931191, 1192sylnibr 329 . . . . 5 ((𝜑𝑥 𝐾) → ¬ 𝑥 ∈ (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)))
119413a1i 11 . . . . . 6 ((𝜑𝑥 𝐾) → 𝐽 ∈ Top)
119514adantr 480 . . . . . 6 ((𝜑𝑥 𝐾) → (𝑋[,]𝑌) ⊆ ℝ)
119611adantr 480 . . . . . 6 ((𝜑𝑥 𝐾) → 𝐻 ⊆ (𝑋[,]𝑌))
119717, 4restlp 23098 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ 𝐻 ⊆ (𝑋[,]𝑌)) → ((limPt‘𝐾)‘𝐻) = (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)))
11981194, 1195, 1196, 1197syl3anc 1373 . . . . 5 ((𝜑𝑥 𝐾) → ((limPt‘𝐾)‘𝐻) = (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)))
11991193, 1198neleqtrrd 2854 . . . 4 ((𝜑𝑥 𝐾) → ¬ 𝑥 ∈ ((limPt‘𝐾)‘𝐻))
12001199nrexdv 3127 . . 3 (𝜑 → ¬ ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
12011200adantr 480 . 2 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → ¬ ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
120228, 1201condan 817 1 (𝜑𝐻 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  cin 3896  wss 3897  c0 4280  cop 4579   cuni 4856   class class class wbr 5089   I cid 5508   Or wor 5521   × cxp 5612  dom cdm 5614  ran crn 5615  cres 5616  ccom 5618  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  infcinf 9325  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cz 12468  +crp 12890  (,)cioo 13245  [,]cicc 13248  abscabs 15141  t crest 17324  topGenctg 17341  Topctop 22808  limPtclp 23049  Compccmp 23301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-cmp 23302
This theorem is referenced by:  fourierdlem54  46206
  Copyright terms: Public domain W3C validator