Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem42 Structured version   Visualization version   GIF version

Theorem fourierdlem42 46120
Description: The set of points in a moved partition are finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.)
Hypotheses
Ref Expression
fourierdlem42.b (𝜑𝐵 ∈ ℝ)
fourierdlem42.c (𝜑𝐶 ∈ ℝ)
fourierdlem42.bc (𝜑𝐵 < 𝐶)
fourierdlem42.t 𝑇 = (𝐶𝐵)
fourierdlem42.a (𝜑𝐴 ⊆ (𝐵[,]𝐶))
fourierdlem42.af (𝜑𝐴 ∈ Fin)
fourierdlem42.ba (𝜑𝐵𝐴)
fourierdlem42.ca (𝜑𝐶𝐴)
fourierdlem42.d 𝐷 = (abs ∘ − )
fourierdlem42.i 𝐼 = ((𝐴 × 𝐴) ∖ I )
fourierdlem42.r 𝑅 = ran (𝐷𝐼)
fourierdlem42.e 𝐸 = inf(𝑅, ℝ, < )
fourierdlem42.x (𝜑𝑋 ∈ ℝ)
fourierdlem42.y (𝜑𝑌 ∈ ℝ)
fourierdlem42.j 𝐽 = (topGen‘ran (,))
fourierdlem42.k 𝐾 = (𝐽t (𝑋[,]𝑌))
fourierdlem42.h 𝐻 = {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴}
fourierdlem42.15 (𝜓 ↔ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
Assertion
Ref Expression
fourierdlem42 (𝜑𝐻 ∈ Fin)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑗,𝑘,𝑥   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝐸,𝑎,𝑏,𝑗,𝑘   𝐻,𝑎,𝑏,𝑥   𝑥,𝐼   𝐽,𝑎,𝑏   𝐾,𝑎,𝑏,𝑥   𝑥,𝑅   𝑇,𝑎,𝑏,𝑗,𝑘,𝑥   𝑥,𝑋   𝑥,𝑌   𝜑,𝑎,𝑏,𝑥   𝜓,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑥,𝑎,𝑏)   𝐵(𝑗,𝑘,𝑎,𝑏)   𝐶(𝑗,𝑘,𝑎,𝑏)   𝐷(𝑗,𝑘,𝑎,𝑏)   𝑅(𝑗,𝑘,𝑎,𝑏)   𝐸(𝑥)   𝐻(𝑗,𝑘)   𝐼(𝑗,𝑘,𝑎,𝑏)   𝐽(𝑥,𝑗,𝑘)   𝐾(𝑗,𝑘)   𝑋(𝑗,𝑘,𝑎,𝑏)   𝑌(𝑗,𝑘,𝑎,𝑏)

Proof of Theorem fourierdlem42
Dummy variables 𝑐 𝑑 𝑖 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem42.x . . . . 5 (𝜑𝑋 ∈ ℝ)
2 fourierdlem42.y . . . . 5 (𝜑𝑌 ∈ ℝ)
3 fourierdlem42.j . . . . . 6 𝐽 = (topGen‘ran (,))
4 fourierdlem42.k . . . . . 6 𝐾 = (𝐽t (𝑋[,]𝑌))
53, 4icccmp 24690 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝐾 ∈ Comp)
61, 2, 5syl2anc 584 . . . 4 (𝜑𝐾 ∈ Comp)
76adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → 𝐾 ∈ Comp)
8 fourierdlem42.h . . . . . 6 𝐻 = {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴}
9 ssrab2 4039 . . . . . . 7 {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ⊆ (𝑋[,]𝑌)
109a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ⊆ (𝑋[,]𝑌))
118, 10eqsstrid 3982 . . . . 5 (𝜑𝐻 ⊆ (𝑋[,]𝑌))
12 retop 24625 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
133, 12eqeltri 2824 . . . . . . 7 𝐽 ∈ Top
141, 2iccssred 13371 . . . . . . 7 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
15 uniretop 24626 . . . . . . . . 9 ℝ = (topGen‘ran (,))
163unieqi 4879 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
1715, 16eqtr4i 2755 . . . . . . . 8 ℝ = 𝐽
1817restuni 23025 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋[,]𝑌) ⊆ ℝ) → (𝑋[,]𝑌) = (𝐽t (𝑋[,]𝑌)))
1913, 14, 18sylancr 587 . . . . . 6 (𝜑 → (𝑋[,]𝑌) = (𝐽t (𝑋[,]𝑌)))
204unieqi 4879 . . . . . . 7 𝐾 = (𝐽t (𝑋[,]𝑌))
2120eqcomi 2738 . . . . . 6 (𝐽t (𝑋[,]𝑌)) = 𝐾
2219, 21eqtrdi 2780 . . . . 5 (𝜑 → (𝑋[,]𝑌) = 𝐾)
2311, 22sseqtrd 3980 . . . 4 (𝜑𝐻 𝐾)
2423adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → 𝐻 𝐾)
25 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → ¬ 𝐻 ∈ Fin)
26 eqid 2729 . . . 4 𝐾 = 𝐾
2726bwth 23273 . . 3 ((𝐾 ∈ Comp ∧ 𝐻 𝐾 ∧ ¬ 𝐻 ∈ Fin) → ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
287, 24, 25, 27syl3anc 1373 . 2 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
2911, 14sstrd 3954 . . . . . . . . . 10 (𝜑𝐻 ⊆ ℝ)
3029ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → 𝐻 ⊆ ℝ)
31 ne0i 4300 . . . . . . . . . 10 (𝑥 ∈ ((limPt‘𝐽)‘𝐻) → ((limPt‘𝐽)‘𝐻) ≠ ∅)
3231adantl 481 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → ((limPt‘𝐽)‘𝐻) ≠ ∅)
33 fourierdlem42.e . . . . . . . . . . 11 𝐸 = inf(𝑅, ℝ, < )
34 fourierdlem42.r . . . . . . . . . . . . 13 𝑅 = ran (𝐷𝐼)
35 absf 15280 . . . . . . . . . . . . . . . . . 18 abs:ℂ⟶ℝ
36 ffn 6670 . . . . . . . . . . . . . . . . . 18 (abs:ℂ⟶ℝ → abs Fn ℂ)
3735, 36ax-mp 5 . . . . . . . . . . . . . . . . 17 abs Fn ℂ
38 subf 11399 . . . . . . . . . . . . . . . . . 18 − :(ℂ × ℂ)⟶ℂ
39 ffn 6670 . . . . . . . . . . . . . . . . . 18 ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ))
4038, 39ax-mp 5 . . . . . . . . . . . . . . . . 17 − Fn (ℂ × ℂ)
41 frn 6677 . . . . . . . . . . . . . . . . . 18 ( − :(ℂ × ℂ)⟶ℂ → ran − ⊆ ℂ)
4238, 41ax-mp 5 . . . . . . . . . . . . . . . . 17 ran − ⊆ ℂ
43 fnco 6618 . . . . . . . . . . . . . . . . 17 ((abs Fn ℂ ∧ − Fn (ℂ × ℂ) ∧ ran − ⊆ ℂ) → (abs ∘ − ) Fn (ℂ × ℂ))
4437, 40, 42, 43mp3an 1463 . . . . . . . . . . . . . . . 16 (abs ∘ − ) Fn (ℂ × ℂ)
45 fourierdlem42.d . . . . . . . . . . . . . . . . 17 𝐷 = (abs ∘ − )
4645fneq1i 6597 . . . . . . . . . . . . . . . 16 (𝐷 Fn (ℂ × ℂ) ↔ (abs ∘ − ) Fn (ℂ × ℂ))
4744, 46mpbir 231 . . . . . . . . . . . . . . 15 𝐷 Fn (ℂ × ℂ)
48 fourierdlem42.i . . . . . . . . . . . . . . . 16 𝐼 = ((𝐴 × 𝐴) ∖ I )
49 fourierdlem42.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
50 fourierdlem42.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
51 fourierdlem42.c . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
5250, 51iccssred 13371 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
53 ax-resscn 11101 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
5452, 53sstrdi 3956 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
5549, 54sstrd 3954 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℂ)
56 xpss12 5646 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℂ ∧ 𝐴 ⊆ ℂ) → (𝐴 × 𝐴) ⊆ (ℂ × ℂ))
5755, 55, 56syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 × 𝐴) ⊆ (ℂ × ℂ))
5857ssdifssd 4106 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 × 𝐴) ∖ I ) ⊆ (ℂ × ℂ))
5948, 58eqsstrid 3982 . . . . . . . . . . . . . . 15 (𝜑𝐼 ⊆ (ℂ × ℂ))
60 fnssres 6623 . . . . . . . . . . . . . . 15 ((𝐷 Fn (ℂ × ℂ) ∧ 𝐼 ⊆ (ℂ × ℂ)) → (𝐷𝐼) Fn 𝐼)
6147, 59, 60sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝐼) Fn 𝐼)
62 fvres 6859 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐼 → ((𝐷𝐼)‘𝑥) = (𝐷𝑥))
6362adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) = (𝐷𝑥))
6445fveq1i 6841 . . . . . . . . . . . . . . . . . . 19 (𝐷𝑥) = ((abs ∘ − )‘𝑥)
6564a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → (𝐷𝑥) = ((abs ∘ − )‘𝑥))
66 ffun 6673 . . . . . . . . . . . . . . . . . . . 20 ( − :(ℂ × ℂ)⟶ℂ → Fun − )
6738, 66ax-mp 5 . . . . . . . . . . . . . . . . . . 19 Fun −
6859sselda 3943 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → 𝑥 ∈ (ℂ × ℂ))
6938fdmi 6681 . . . . . . . . . . . . . . . . . . . 20 dom − = (ℂ × ℂ)
7068, 69eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → 𝑥 ∈ dom − )
71 fvco 6941 . . . . . . . . . . . . . . . . . . 19 ((Fun − ∧ 𝑥 ∈ dom − ) → ((abs ∘ − )‘𝑥) = (abs‘( − ‘𝑥)))
7267, 70, 71sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ((abs ∘ − )‘𝑥) = (abs‘( − ‘𝑥)))
7363, 65, 723eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) = (abs‘( − ‘𝑥)))
7438a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → − :(ℂ × ℂ)⟶ℂ)
7574, 68ffvelcdmd 7039 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ( − ‘𝑥) ∈ ℂ)
7675abscld 15381 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → (abs‘( − ‘𝑥)) ∈ ℝ)
7773, 76eqeltrd 2828 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) ∈ ℝ)
78 elxp2 5655 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℂ × ℂ) ↔ ∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩)
7968, 78sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → ∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩)
80 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) = ( − ‘⟨𝑦, 𝑧⟩))
81803ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘𝑥) = ( − ‘⟨𝑦, 𝑧⟩))
82 df-ov 7372 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝑧) = ( − ‘⟨𝑦, 𝑧⟩)
83 simp1l 1198 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝜑)
84 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥 = ⟨𝑦, 𝑧⟩)
85 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥𝐼)
8684, 85eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐼𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
8786adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝐼) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
88873adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ⟨𝑦, 𝑧⟩ ∈ 𝐼)
8955adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝐴 ⊆ ℂ)
9048eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑦, 𝑧⟩ ∈ 𝐼 ↔ ⟨𝑦, 𝑧⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
91 eldif 3921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑦, 𝑧⟩ ∈ ((𝐴 × 𝐴) ∖ I ) ↔ (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ∧ ¬ ⟨𝑦, 𝑧⟩ ∈ I ))
9290, 91sylbb 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ∧ ¬ ⟨𝑦, 𝑧⟩ ∈ I ))
9392simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴))
94 opelxp 5667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ (𝐴 × 𝐴) ↔ (𝑦𝐴𝑧𝐴))
9593, 94sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → (𝑦𝐴𝑧𝐴))
9695adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → (𝑦𝐴𝑧𝐴))
9796simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦𝐴)
9889, 97sseldd 3944 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦 ∈ ℂ)
9996simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑧𝐴)
10089, 99sseldd 3944 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑧 ∈ ℂ)
10192simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ ⟨𝑦, 𝑧⟩ ∈ I )
102 df-br 5103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 I 𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ I )
103101, 102sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ 𝑦 I 𝑧)
104 vex 3448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 ∈ V
105104ideq 5806 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 I 𝑧𝑦 = 𝑧)
106103, 105sylnib 328 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑦, 𝑧⟩ ∈ 𝐼 → ¬ 𝑦 = 𝑧)
107106neqned 2932 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑦, 𝑧⟩ ∈ 𝐼𝑦𝑧)
108107adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → 𝑦𝑧)
10998, 100, 108subne0d 11518 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐼) → (𝑦𝑧) ≠ 0)
11083, 88, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → (𝑦𝑧) ≠ 0)
11182, 110eqnetrrid 3000 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘⟨𝑦, 𝑧⟩) ≠ 0)
11281, 111eqnetrd 2992 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐼) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → ( − ‘𝑥) ≠ 0)
1131123exp 1119 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) ≠ 0)))
114113rexlimdvv 3191 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → (∃𝑦 ∈ ℂ ∃𝑧 ∈ ℂ 𝑥 = ⟨𝑦, 𝑧⟩ → ( − ‘𝑥) ≠ 0))
11579, 114mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → ( − ‘𝑥) ≠ 0)
116 absgt0 15267 . . . . . . . . . . . . . . . . . . 19 (( − ‘𝑥) ∈ ℂ → (( − ‘𝑥) ≠ 0 ↔ 0 < (abs‘( − ‘𝑥))))
11775, 116syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → (( − ‘𝑥) ≠ 0 ↔ 0 < (abs‘( − ‘𝑥))))
118115, 117mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → 0 < (abs‘( − ‘𝑥)))
11973eqcomd 2735 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → (abs‘( − ‘𝑥)) = ((𝐷𝐼)‘𝑥))
120118, 119breqtrd 5128 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 0 < ((𝐷𝐼)‘𝑥))
12177, 120elrpd 12968 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → ((𝐷𝐼)‘𝑥) ∈ ℝ+)
122121ralrimiva 3125 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐼 ((𝐷𝐼)‘𝑥) ∈ ℝ+)
123 fnfvrnss 7075 . . . . . . . . . . . . . 14 (((𝐷𝐼) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝐷𝐼)‘𝑥) ∈ ℝ+) → ran (𝐷𝐼) ⊆ ℝ+)
12461, 122, 123syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ran (𝐷𝐼) ⊆ ℝ+)
12534, 124eqsstrid 3982 . . . . . . . . . . . 12 (𝜑𝑅 ⊆ ℝ+)
126 ltso 11230 . . . . . . . . . . . . . 14 < Or ℝ
127126a1i 11 . . . . . . . . . . . . 13 (𝜑 → < Or ℝ)
128 fourierdlem42.af . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ Fin)
129 xpfi 9245 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ∈ Fin)
130128, 128, 129syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 × 𝐴) ∈ Fin)
131 diffi 9116 . . . . . . . . . . . . . . . . . 18 ((𝐴 × 𝐴) ∈ Fin → ((𝐴 × 𝐴) ∖ I ) ∈ Fin)
132130, 131syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 × 𝐴) ∖ I ) ∈ Fin)
13348, 132eqeltrid 2832 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ Fin)
134 fnfi 9119 . . . . . . . . . . . . . . . 16 (((𝐷𝐼) Fn 𝐼𝐼 ∈ Fin) → (𝐷𝐼) ∈ Fin)
13561, 133, 134syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐼) ∈ Fin)
136 rnfi 9267 . . . . . . . . . . . . . . 15 ((𝐷𝐼) ∈ Fin → ran (𝐷𝐼) ∈ Fin)
137135, 136syl 17 . . . . . . . . . . . . . 14 (𝜑 → ran (𝐷𝐼) ∈ Fin)
13834, 137eqeltrid 2832 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Fin)
13934a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 = ran (𝐷𝐼))
14045a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 = (abs ∘ − ))
141140reseq1d 5938 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷𝐼) = ((abs ∘ − ) ↾ 𝐼))
142141fveq1d 6842 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) = (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩))
143 fourierdlem42.ba . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵𝐴)
144 fourierdlem42.ca . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶𝐴)
145 opelxp 5667 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) ↔ (𝐵𝐴𝐶𝐴))
146143, 144, 145sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴))
147 fourierdlem42.bc . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 < 𝐶)
14850, 147ltned 11286 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵𝐶)
149148neneqd 2930 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 𝐵 = 𝐶)
150 ideqg 5805 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶𝐴 → (𝐵 I 𝐶𝐵 = 𝐶))
151144, 150syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐵 I 𝐶𝐵 = 𝐶))
152149, 151mtbird 325 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ¬ 𝐵 I 𝐶)
153 df-br 5103 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 I 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ I )
154152, 153sylnib 328 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ ⟨𝐵, 𝐶⟩ ∈ I )
155146, 154eldifd 3922 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
156155, 48eleqtrrdi 2839 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ 𝐼)
157 fvres 6859 . . . . . . . . . . . . . . . . . 18 (⟨𝐵, 𝐶⟩ ∈ 𝐼 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩) = ((abs ∘ − )‘⟨𝐵, 𝐶⟩))
158156, 157syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝐵, 𝐶⟩) = ((abs ∘ − )‘⟨𝐵, 𝐶⟩))
15950recnd 11178 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℂ)
16051recnd 11178 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℂ)
161 opelxp 5667 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝐵, 𝐶⟩ ∈ (ℂ × ℂ) ↔ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
162159, 160, 161sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (ℂ × ℂ))
163162, 69eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ dom − )
164 fvco 6941 . . . . . . . . . . . . . . . . . . 19 ((Fun − ∧ ⟨𝐵, 𝐶⟩ ∈ dom − ) → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘( − ‘⟨𝐵, 𝐶⟩)))
16567, 163, 164sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘( − ‘⟨𝐵, 𝐶⟩)))
166 df-ov 7372 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐶) = ( − ‘⟨𝐵, 𝐶⟩)
167166eqcomi 2738 . . . . . . . . . . . . . . . . . . . 20 ( − ‘⟨𝐵, 𝐶⟩) = (𝐵𝐶)
168167a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( − ‘⟨𝐵, 𝐶⟩) = (𝐵𝐶))
169168fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘( − ‘⟨𝐵, 𝐶⟩)) = (abs‘(𝐵𝐶)))
170165, 169eqtrd 2764 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs ∘ − )‘⟨𝐵, 𝐶⟩) = (abs‘(𝐵𝐶)))
171142, 158, 1703eqtrrd 2769 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(𝐵𝐶)) = ((𝐷𝐼)‘⟨𝐵, 𝐶⟩))
172 fnfvelrn 7034 . . . . . . . . . . . . . . . . 17 (((𝐷𝐼) Fn 𝐼 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐼) → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) ∈ ran (𝐷𝐼))
17361, 156, 172syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷𝐼)‘⟨𝐵, 𝐶⟩) ∈ ran (𝐷𝐼))
174171, 173eqeltrd 2828 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝐵𝐶)) ∈ ran (𝐷𝐼))
175 ne0i 4300 . . . . . . . . . . . . . . 15 ((abs‘(𝐵𝐶)) ∈ ran (𝐷𝐼) → ran (𝐷𝐼) ≠ ∅)
176174, 175syl 17 . . . . . . . . . . . . . 14 (𝜑 → ran (𝐷𝐼) ≠ ∅)
177139, 176eqnetrd 2992 . . . . . . . . . . . . 13 (𝜑𝑅 ≠ ∅)
178 resss 5961 . . . . . . . . . . . . . . . . 17 (𝐷𝐼) ⊆ 𝐷
179 rnss 5892 . . . . . . . . . . . . . . . . 17 ((𝐷𝐼) ⊆ 𝐷 → ran (𝐷𝐼) ⊆ ran 𝐷)
180178, 179ax-mp 5 . . . . . . . . . . . . . . . 16 ran (𝐷𝐼) ⊆ ran 𝐷
18145rneqi 5890 . . . . . . . . . . . . . . . . 17 ran 𝐷 = ran (abs ∘ − )
182 rncoss 5928 . . . . . . . . . . . . . . . . . 18 ran (abs ∘ − ) ⊆ ran abs
183 frn 6677 . . . . . . . . . . . . . . . . . . 19 (abs:ℂ⟶ℝ → ran abs ⊆ ℝ)
18435, 183ax-mp 5 . . . . . . . . . . . . . . . . . 18 ran abs ⊆ ℝ
185182, 184sstri 3953 . . . . . . . . . . . . . . . . 17 ran (abs ∘ − ) ⊆ ℝ
186181, 185eqsstri 3990 . . . . . . . . . . . . . . . 16 ran 𝐷 ⊆ ℝ
187180, 186sstri 3953 . . . . . . . . . . . . . . 15 ran (𝐷𝐼) ⊆ ℝ
18834, 187eqsstri 3990 . . . . . . . . . . . . . 14 𝑅 ⊆ ℝ
189188a1i 11 . . . . . . . . . . . . 13 (𝜑𝑅 ⊆ ℝ)
190 fiinfcl 9430 . . . . . . . . . . . . 13 (( < Or ℝ ∧ (𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝑅 ⊆ ℝ)) → inf(𝑅, ℝ, < ) ∈ 𝑅)
191127, 138, 177, 189, 190syl13anc 1374 . . . . . . . . . . . 12 (𝜑 → inf(𝑅, ℝ, < ) ∈ 𝑅)
192125, 191sseldd 3944 . . . . . . . . . . 11 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ+)
19333, 192eqeltrid 2832 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ+)
194193ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → 𝐸 ∈ ℝ+)
1953, 30, 32, 194lptre2pt 45611 . . . . . . . 8 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
196 simpll 766 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝜑)
19729sselda 3943 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐻) → 𝑦 ∈ ℝ)
198197adantrr 717 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → 𝑦 ∈ ℝ)
199198adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
20029sselda 3943 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐻) → 𝑧 ∈ ℝ)
201200adantrl 716 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → 𝑧 ∈ ℝ)
202201adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑧 ∈ ℝ)
203 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝑦𝑧)
204199, 202, 2033jca 1128 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧))
2058eleq2i 2820 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐻𝑦 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴})
206 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝑥 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
207206eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
208207rexbidv 3157 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
209 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
210209oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
211210eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
212211cbvrexvw 3214 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
213208, 212bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
214213elrab 3656 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ↔ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
215205, 214sylbb 219 . . . . . . . . . . . . . . . . . 18 (𝑦𝐻 → (𝑦 ∈ (𝑋[,]𝑌) ∧ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
216215simprd 495 . . . . . . . . . . . . . . . . 17 (𝑦𝐻 → ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
217216adantr 480 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑧𝐻) → ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴)
2188eleq2i 2820 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐻𝑧 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴})
219 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (𝑥 + (𝑘 · 𝑇)) = (𝑧 + (𝑘 · 𝑇)))
220219eleq1d 2813 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
221220rexbidv 3157 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
222221elrab 3656 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} ↔ (𝑧 ∈ (𝑋[,]𝑌) ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
223218, 222sylbb 219 . . . . . . . . . . . . . . . . . 18 (𝑧𝐻 → (𝑧 ∈ (𝑋[,]𝑌) ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
224223simprd 495 . . . . . . . . . . . . . . . . 17 (𝑧𝐻 → ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)
225224adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑧𝐻) → ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)
226 reeanv 3207 . . . . . . . . . . . . . . . 16 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ (∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ ∃𝑘 ∈ ℤ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
227217, 225, 226sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝑦𝐻𝑧𝐻) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
228227ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
229 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → 𝜑)
230 simpl1 1192 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑦 ∈ ℝ)
231 simpl2 1193 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑧 ∈ ℝ)
232 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → 𝑦 < 𝑧)
233230, 231, 2323jca 1128 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
234233adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
235234adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))
236 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
237 eleq1 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → (𝑏 ∈ ℝ ↔ 𝑧 ∈ ℝ))
238 breq2 5106 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → (𝑦 < 𝑏𝑦 < 𝑧))
239237, 2383anbi23d 1441 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → ((𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏) ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)))
240239anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ↔ (𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧))))
241 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (𝑏 + (𝑘 · 𝑇)) = (𝑧 + (𝑘 · 𝑇)))
242241eleq1d 2813 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → ((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))
243242anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → (((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)))
2442432rexbidv 3200 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)))
245240, 244anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴))))
246 oveq2 7377 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑧 → (𝑦𝑏) = (𝑦𝑧))
247246fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑧 → (abs‘(𝑦𝑏)) = (abs‘(𝑦𝑧)))
248247breq2d 5114 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (𝐸 ≤ (abs‘(𝑦𝑏)) ↔ 𝐸 ≤ (abs‘(𝑦𝑧))))
249245, 248imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑧 → ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑏))) ↔ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑧)))))
250 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → (𝑎 ∈ ℝ ↔ 𝑦 ∈ ℝ))
251 breq1 5105 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → (𝑎 < 𝑏𝑦 < 𝑏))
252250, 2513anbi13d 1440 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ↔ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)))
253252anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ↔ (𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏))))
254 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑦 → (𝑎 + (𝑗 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
255254eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ 𝐴))
256255anbi1d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → (((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
2572562rexbidv 3200 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
258253, 257anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑦 → (((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))))
259 oveq1 7376 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → (𝑎𝑏) = (𝑦𝑏))
260259fveq2d 6844 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → (abs‘(𝑎𝑏)) = (abs‘(𝑦𝑏)))
261260breq2d 5114 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑦 → (𝐸 ≤ (abs‘(𝑎𝑏)) ↔ 𝐸 ≤ (abs‘(𝑦𝑏))))
262258, 261imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → ((((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏))) ↔ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑏)))))
263 fourierdlem42.15 . . . . . . . . . . . . . . . . . . 19 (𝜓 ↔ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
264263simprbi 496 . . . . . . . . . . . . . . . . . . . 20 (𝜓 → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
265263biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
266265simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → (𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)))
267266simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝜑)
268267, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝐵 ∈ ℝ)
269268adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℝ)
270267, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝐶 ∈ ℝ)
271270adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐶 ∈ ℝ)
272267, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝐴 ⊆ (𝐵[,]𝐶))
273272sselda 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ (𝐵[,]𝐶))
274273adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ (𝐵[,]𝐶))
275272sselda 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶))
276275adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶))
277269, 271, 274, 276iccsuble 45490 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (𝐶𝐵))
278 fourierdlem42.t . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑇 = (𝐶𝐵)
279277, 278breqtrrdi 5144 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
2802793adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
281280adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
282 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → ¬ 𝑘𝑗)
283 zre 12509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
284283adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑗 ∈ ℝ)
285284ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑗 ∈ ℝ)
286 zre 12509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
287286adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
288287ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑘 ∈ ℝ)
289285, 288ltnled 11297 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → (𝑗 < 𝑘 ↔ ¬ 𝑘𝑗))
290282, 289mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → 𝑗 < 𝑘)
29151, 50resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝐶𝐵) ∈ ℝ)
292278, 291eqeltrid 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑇 ∈ ℝ)
293267, 292syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜓𝑇 ∈ ℝ)
294293ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ∈ ℝ)
295287adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℝ)
296284adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℝ)
297295, 296resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘𝑗) ∈ ℝ)
298293adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑇 ∈ ℝ)
299297, 298remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) ∈ ℝ)
300299adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑘𝑗) · 𝑇) ∈ ℝ)
301266simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏))
302301simp2d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑏 ∈ ℝ)
303302adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑏 ∈ ℝ)
304286adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
305293adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
306304, 305remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
307306adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑇) ∈ ℝ)
308303, 307readdcld 11179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
309301simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑎 ∈ ℝ)
310309adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑎 ∈ ℝ)
311283adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
312293adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → 𝑇 ∈ ℝ)
313311, 312remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ) → (𝑗 · 𝑇) ∈ ℝ)
314313adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 · 𝑇) ∈ ℝ)
315310, 314readdcld 11179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
316308, 315resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
317316adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
318293recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑇 ∈ ℂ)
319318mullidd 11168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → (1 · 𝑇) = 𝑇)
320319eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓𝑇 = (1 · 𝑇))
321320ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 = (1 · 𝑇))
322 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑗 < 𝑘)
323 zltlem1 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 < 𝑘𝑗 ≤ (𝑘 − 1)))
324323ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑗 < 𝑘𝑗 ≤ (𝑘 − 1)))
325322, 324mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑗 ≤ (𝑘 − 1))
326284ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 𝑗 ∈ ℝ)
327 peano2rem 11465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ℝ → (𝑘 − 1) ∈ ℝ)
328295, 327syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 − 1) ∈ ℝ)
329328adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑘 − 1) ∈ ℝ)
330 1re 11150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1 ∈ ℝ
331 resubcl 11462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((1 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (1 − 𝑗) ∈ ℝ)
332330, 326, 331sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (1 − 𝑗) ∈ ℝ)
333 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 𝑗 ≤ (𝑘 − 1))
334326, 329, 332, 333leadd1dd 11768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑗 + (1 − 𝑗)) ≤ ((𝑘 − 1) + (1 − 𝑗)))
335 zcn 12510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
336335adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑗 ∈ ℂ)
337 1cnd 11145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 1 ∈ ℂ)
338336, 337pncan3d 11512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 + (1 − 𝑗)) = 1)
339338ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → (𝑗 + (1 − 𝑗)) = 1)
340 zcn 12510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
341340adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
342341, 337, 336npncand 11533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 − 1) + (1 − 𝑗)) = (𝑘𝑗))
343342ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → ((𝑘 − 1) + (1 − 𝑗)) = (𝑘𝑗))
344334, 339, 3433brtr3d 5133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 ≤ (𝑘 − 1)) → 1 ≤ (𝑘𝑗))
345325, 344syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 1 ≤ (𝑘𝑗))
346330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 1 ∈ ℝ)
347297adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑘𝑗) ∈ ℝ)
34850, 51posdifd 11741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝐵 < 𝐶 ↔ 0 < (𝐶𝐵)))
349147, 348mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → 0 < (𝐶𝐵))
350349, 278breqtrrdi 5144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → 0 < 𝑇)
351292, 350elrpd 12968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝑇 ∈ ℝ+)
352267, 351syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓𝑇 ∈ ℝ+)
353352ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ∈ ℝ+)
354346, 347, 353lemul1d 13014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (1 ≤ (𝑘𝑗) ↔ (1 · 𝑇) ≤ ((𝑘𝑗) · 𝑇)))
355345, 354mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (1 · 𝑇) ≤ ((𝑘𝑗) · 𝑇))
356321, 355eqbrtrd 5124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 ≤ ((𝑘𝑗) · 𝑇))
357302, 309resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → (𝑏𝑎) ∈ ℝ)
358301simp3d 1144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜓𝑎 < 𝑏)
359309, 302posdifd 11741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜓 → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
360358, 359mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓 → 0 < (𝑏𝑎))
361357, 360elrpd 12968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (𝑏𝑎) ∈ ℝ+)
362361adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏𝑎) ∈ ℝ+)
363299, 362ltaddrp2d 13005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) < ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
364302recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓𝑏 ∈ ℂ)
365364adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑏 ∈ ℂ)
366306recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℂ)
367366adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑇) ∈ ℂ)
368309recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜓𝑎 ∈ ℂ)
369368adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑎 ∈ ℂ)
370313recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ) → (𝑗 · 𝑇) ∈ ℂ)
371370adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 · 𝑇) ∈ ℂ)
372365, 367, 369, 371addsub4d 11556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘 · 𝑇) − (𝑗 · 𝑇))))
373340ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
374335ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℂ)
375318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑇 ∈ ℂ)
376373, 374, 375subdird 11611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) = ((𝑘 · 𝑇) − (𝑗 · 𝑇)))
377376eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑇) − (𝑗 · 𝑇)) = ((𝑘𝑗) · 𝑇))
378377oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + ((𝑘 · 𝑇) − (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
379372, 378eqtr2d 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) = ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
380363, 379breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
381380adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ((𝑘𝑗) · 𝑇) < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
382294, 300, 317, 356, 381lelttrd 11308 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → 𝑇 < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
383294, 317ltnled 11297 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → (𝑇 < ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ↔ ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇))
384382, 383mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑗 < 𝑘) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
385290, 384syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ ¬ 𝑘𝑗) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
3863853adantl3 1169 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑘𝑗) → ¬ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ 𝑇)
387281, 386condan 817 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘𝑗)
388188, 191sselid 3941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
38933, 388eqeltrid 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐸 ∈ ℝ)
390267, 389syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓𝐸 ∈ ℝ)
3913903ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ∈ ℝ)
392391ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ∈ ℝ)
3932933ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℝ)
394393ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ∈ ℝ)
395284, 287resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗𝑘) ∈ ℝ)
396395adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗𝑘) ∈ ℝ)
397396, 298remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
3983973adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
399398ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
400 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝜑)
401143, 144jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝐵𝐴𝐶𝐴))
402400, 401, 1473jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶))
403 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑑 = 𝐶 → (𝑑𝐴𝐶𝐴))
404403anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → ((𝐵𝐴𝑑𝐴) ↔ (𝐵𝐴𝐶𝐴)))
405 breq2 5106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → (𝐵 < 𝑑𝐵 < 𝐶))
406404, 4053anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = 𝐶 → ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) ↔ (𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶)))
407 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = 𝐶 → (𝑑𝐵) = (𝐶𝐵))
408407breq2d 5114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = 𝐶 → (𝐸 ≤ (𝑑𝐵) ↔ 𝐸 ≤ (𝐶𝐵)))
409406, 408imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑑 = 𝐶 → (((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵)) ↔ ((𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶) → 𝐸 ≤ (𝐶𝐵))))
410 simp2l 1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐵𝐴)
411 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = 𝐵 → (𝑐𝐴𝐵𝐴))
412411anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → ((𝑐𝐴𝑑𝐴) ↔ (𝐵𝐴𝑑𝐴)))
413 breq1 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → (𝑐 < 𝑑𝐵 < 𝑑))
414412, 4133anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = 𝐵 → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑)))
415 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = 𝐵 → (𝑑𝑐) = (𝑑𝐵))
416415breq2d 5114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = 𝐵 → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ (𝑑𝐵)))
417414, 416imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑐 = 𝐵 → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵))))
418188a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑅 ⊆ ℝ)
419 0re 11152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 0 ∈ ℝ
42034eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑦𝑅𝑦 ∈ ran (𝐷𝐼))
421420biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦𝑅𝑦 ∈ ran (𝐷𝐼))
422421adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → 𝑦 ∈ ran (𝐷𝐼))
42361adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑𝑦𝑅) → (𝐷𝐼) Fn 𝐼)
424 fvelrnb 6903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐷𝐼) Fn 𝐼 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
425423, 424syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
426422, 425mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑦𝑅) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦)
427121rpge0d 12975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑𝑥𝐼) → 0 ≤ ((𝐷𝐼)‘𝑥))
4284273adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → 0 ≤ ((𝐷𝐼)‘𝑥))
429 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → ((𝐷𝐼)‘𝑥) = 𝑦)
430428, 429breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑𝑥𝐼 ∧ ((𝐷𝐼)‘𝑥) = 𝑦) → 0 ≤ 𝑦)
4314303exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜑 → (𝑥𝐼 → (((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦)))
432431adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑦𝑅) → (𝑥𝐼 → (((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦)))
433432rexlimdv 3132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑦𝑅) → (∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦 → 0 ≤ 𝑦))
434426, 433mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑𝑦𝑅) → 0 ≤ 𝑦)
435434ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝜑 → ∀𝑦𝑅 0 ≤ 𝑦)
436 breq1 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
437436ralbidv 3156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥 = 0 → (∀𝑦𝑅 𝑥𝑦 ↔ ∀𝑦𝑅 0 ≤ 𝑦))
438437rspcev 3585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((0 ∈ ℝ ∧ ∀𝑦𝑅 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
439419, 435, 438sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
4404393ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦)
441 pm3.22 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑐𝐴𝑑𝐴) → (𝑑𝐴𝑐𝐴))
442 opelxp 5667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴) ↔ (𝑑𝐴𝑐𝐴))
443441, 442sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑐𝐴𝑑𝐴) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
4444433ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
44549, 52sstrd 3954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝜑𝐴 ⊆ ℝ)
446445sselda 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑𝑐𝐴) → 𝑐 ∈ ℝ)
447446adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → 𝑐 ∈ ℝ)
4484473adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐 ∈ ℝ)
449 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐 < 𝑑)
450448, 449gtned 11285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑑𝑐)
451450neneqd 2930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ¬ 𝑑 = 𝑐)
452 df-br 5103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑑 I 𝑐 ↔ ⟨𝑑, 𝑐⟩ ∈ I )
453 vex 3448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑐 ∈ V
454453ideq 5806 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑑 I 𝑐𝑑 = 𝑐)
455452, 454bitr3i 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (⟨𝑑, 𝑐⟩ ∈ I ↔ 𝑑 = 𝑐)
456451, 455sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ¬ ⟨𝑑, 𝑐⟩ ∈ I )
457444, 456eldifd 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
458457, 48eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ⟨𝑑, 𝑐⟩ ∈ 𝐼)
459448, 449ltned 11286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐𝑑)
4601413ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (𝐷𝐼) = ((abs ∘ − ) ↾ 𝐼))
461460fveq1d 6842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩))
4624433ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ (𝐴 × 𝐴))
463 necom 2978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑐𝑑𝑑𝑐)
464463biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝑐𝑑𝑑𝑐)
465464neneqd 2930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑐𝑑 → ¬ 𝑑 = 𝑐)
4664653ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ¬ 𝑑 = 𝑐)
467466, 455sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ¬ ⟨𝑑, 𝑐⟩ ∈ I )
468462, 467eldifd 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ ((𝐴 × 𝐴) ∖ I ))
469468, 48eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ 𝐼)
470 fvres 6859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (⟨𝑑, 𝑐⟩ ∈ 𝐼 → (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩) = ((abs ∘ − )‘⟨𝑑, 𝑐⟩))
471469, 470syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (((abs ∘ − ) ↾ 𝐼)‘⟨𝑑, 𝑐⟩) = ((abs ∘ − )‘⟨𝑑, 𝑐⟩))
472 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → 𝜑)
473472, 469jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼))
474 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝑥 = ⟨𝑑, 𝑐⟩ → (𝑥𝐼 ↔ ⟨𝑑, 𝑐⟩ ∈ 𝐼))
475474anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = ⟨𝑑, 𝑐⟩ → ((𝜑𝑥𝐼) ↔ (𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼)))
476 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = ⟨𝑑, 𝑐⟩ → (𝑥 ∈ dom − ↔ ⟨𝑑, 𝑐⟩ ∈ dom − ))
477475, 476imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑥 = ⟨𝑑, 𝑐⟩ → (((𝜑𝑥𝐼) → 𝑥 ∈ dom − ) ↔ ((𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼) → ⟨𝑑, 𝑐⟩ ∈ dom − )))
478477, 70vtoclg 3517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (⟨𝑑, 𝑐⟩ ∈ 𝐼 → ((𝜑 ∧ ⟨𝑑, 𝑐⟩ ∈ 𝐼) → ⟨𝑑, 𝑐⟩ ∈ dom − ))
479469, 473, 478sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ⟨𝑑, 𝑐⟩ ∈ dom − )
480 fvco 6941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((Fun − ∧ ⟨𝑑, 𝑐⟩ ∈ dom − ) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘( − ‘⟨𝑑, 𝑐⟩)))
48167, 479, 480sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘( − ‘⟨𝑑, 𝑐⟩)))
482 df-ov 7372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑑𝑐) = ( − ‘⟨𝑑, 𝑐⟩)
483482eqcomi 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ( − ‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)
484483fveq2i 6843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (abs‘( − ‘⟨𝑑, 𝑐⟩)) = (abs‘(𝑑𝑐))
485481, 484eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((abs ∘ − )‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
486461, 471, 4853eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
487459, 486syld3an3 1411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (abs‘(𝑑𝑐)))
488445sselda 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑𝑑𝐴) → 𝑑 ∈ ℝ)
489488adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → 𝑑 ∈ ℝ)
4904893adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑑 ∈ ℝ)
491448, 490, 449ltled 11298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝑐𝑑)
492448, 490, 491abssubge0d 15376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (abs‘(𝑑𝑐)) = (𝑑𝑐))
493487, 492eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐))
494 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑥 = ⟨𝑑, 𝑐⟩ → ((𝐷𝐼)‘𝑥) = ((𝐷𝐼)‘⟨𝑑, 𝑐⟩))
495494eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = ⟨𝑑, 𝑐⟩ → (((𝐷𝐼)‘𝑥) = (𝑑𝑐) ↔ ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)))
496495rspcev 3585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((⟨𝑑, 𝑐⟩ ∈ 𝐼 ∧ ((𝐷𝐼)‘⟨𝑑, 𝑐⟩) = (𝑑𝑐)) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))
497458, 493, 496syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))
498489, 447resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑑𝑐) ∈ ℝ)
499 elex 3465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑑𝑐) ∈ ℝ → (𝑑𝑐) ∈ V)
500498, 499syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑑𝑐) ∈ V)
5015003adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ V)
502 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝜑)
503 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦 = (𝑑𝑐) → (𝑦 ∈ ran (𝐷𝐼) ↔ (𝑑𝑐) ∈ ran (𝐷𝐼)))
504 eqeq2 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑦 = (𝑑𝑐) → (((𝐷𝐼)‘𝑥) = 𝑦 ↔ ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
505504rexbidv 3157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑦 = (𝑑𝑐) → (∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦 ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
506503, 505bibi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑦 = (𝑑𝑐) → ((𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦) ↔ ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))))
507506imbi2d 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑦 = (𝑑𝑐) → ((𝜑 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦)) ↔ (𝜑 → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))))
50861, 424syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝜑 → (𝑦 ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = 𝑦))
509507, 508vtoclg 3517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑑𝑐) ∈ V → (𝜑 → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐))))
510501, 502, 509sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → ((𝑑𝑐) ∈ ran (𝐷𝐼) ↔ ∃𝑥𝐼 ((𝐷𝐼)‘𝑥) = (𝑑𝑐)))
511497, 510mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ ran (𝐷𝐼))
512511, 34eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → (𝑑𝑐) ∈ 𝑅)
513 infrelb 12144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑅 𝑥𝑦 ∧ (𝑑𝑐) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑑𝑐))
514418, 440, 512, 513syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → inf(𝑅, ℝ, < ) ≤ (𝑑𝑐))
51533, 514eqbrtrid 5137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐))
516417, 515vtoclg 3517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐵𝐴 → ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵)))
517410, 516mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵))
518409, 517vtoclg 3517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐶𝐴 → ((𝜑 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵 < 𝐶) → 𝐸 ≤ (𝐶𝐵)))
519144, 402, 518sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐸 ≤ (𝐶𝐵))
520519, 278breqtrrdi 5144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐸𝑇)
521267, 520syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓𝐸𝑇)
5225213ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸𝑇)
523522ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸𝑇)
524364adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑘 ∈ ℤ) → 𝑏 ∈ ℂ)
525524, 366pncan2d 11511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) = (𝑘 · 𝑇))
526525oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑘 ∈ ℤ) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) = ((𝑘 · 𝑇) / 𝑇))
527340adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
528318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑇 ∈ ℂ)
529419a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝜑 → 0 ∈ ℝ)
530529, 350gtned 11285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑𝑇 ≠ 0)
531267, 530syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓𝑇 ≠ 0)
532531adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑘 ∈ ℤ) → 𝑇 ≠ 0)
533527, 528, 532divcan4d 11940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑘 ∈ ℤ) → ((𝑘 · 𝑇) / 𝑇) = 𝑘)
534526, 533eqtr2d 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑘 ∈ ℤ) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
535534adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
536535adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
537 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑏 + (𝑘 · 𝑇)) − 𝑏))
538537oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
539538adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
540368adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑎 ∈ ℂ)
541364adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑏 ∈ ℂ)
542540, 370, 541addsubd 11530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑎𝑏) + (𝑗 · 𝑇)))
543540, 541subcld 11509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → (𝑎𝑏) ∈ ℂ)
544543, 370addcomd 11352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) + (𝑗 · 𝑇)) = ((𝑗 · 𝑇) + (𝑎𝑏)))
545542, 544eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) = ((𝑗 · 𝑇) + (𝑎𝑏)))
546545oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (((𝑗 · 𝑇) + (𝑎𝑏)) / 𝑇))
547318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → 𝑇 ∈ ℂ)
548531adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → 𝑇 ≠ 0)
549370, 543, 547, 548divdird 11972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑗 · 𝑇) + (𝑎𝑏)) / 𝑇) = (((𝑗 · 𝑇) / 𝑇) + ((𝑎𝑏) / 𝑇)))
550335adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓𝑗 ∈ ℤ) → 𝑗 ∈ ℂ)
551550, 547, 548divcan4d 11940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓𝑗 ∈ ℤ) → ((𝑗 · 𝑇) / 𝑇) = 𝑗)
552551oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → (((𝑗 · 𝑇) / 𝑇) + ((𝑎𝑏) / 𝑇)) = (𝑗 + ((𝑎𝑏) / 𝑇)))
553546, 549, 5523eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
554553adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
555554adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) = (𝑗 + ((𝑎𝑏) / 𝑇)))
556536, 539, 5553eqtr2d 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 = (𝑗 + ((𝑎𝑏) / 𝑇)))
557309, 302resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓 → (𝑎𝑏) ∈ ℝ)
558309, 302sublt0d 11780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜓 → ((𝑎𝑏) < 0 ↔ 𝑎 < 𝑏))
559358, 558mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝜓 → (𝑎𝑏) < 0)
560557, 352, 559divlt0gt0d 45257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓 → ((𝑎𝑏) / 𝑇) < 0)
561560adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) < 0)
562335subidd 11497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑗 ∈ ℤ → (𝑗𝑗) = 0)
563562eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑗 ∈ ℤ → 0 = (𝑗𝑗))
564563adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → 0 = (𝑗𝑗))
565561, 564breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) < (𝑗𝑗))
566557, 293, 531redivcld 11986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓 → ((𝑎𝑏) / 𝑇) ∈ ℝ)
567566adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ) → ((𝑎𝑏) / 𝑇) ∈ ℝ)
568311, 567, 311ltaddsub2d 11755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ) → ((𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗 ↔ ((𝑎𝑏) / 𝑇) < (𝑗𝑗)))
569565, 568mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓𝑗 ∈ ℤ) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
570569adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
571570adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑗 + ((𝑎𝑏) / 𝑇)) < 𝑗)
572556, 571eqbrtrd 5124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑘 < 𝑗)
573320ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 = (1 · 𝑇))
574 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 < 𝑗)
575 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ∈ ℤ)
576 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑗 ∈ ℤ)
577 zltp1le 12559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑘 < 𝑗 ↔ (𝑘 + 1) ≤ 𝑗))
578575, 576, 577syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → (𝑘 < 𝑗 ↔ (𝑘 + 1) ≤ 𝑗))
579574, 578mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → (𝑘 + 1) ≤ 𝑗)
580286ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ∈ ℝ)
581330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 1 ∈ ℝ)
582283ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑗 ∈ ℝ)
583580, 581, 582leaddsub2d 11756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → ((𝑘 + 1) ≤ 𝑗 ↔ 1 ≤ (𝑗𝑘)))
584579, 583mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 1 ≤ (𝑗𝑘))
585584adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 1 ≤ (𝑗𝑘))
586330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 1 ∈ ℝ)
587395ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (𝑗𝑘) ∈ ℝ)
588352ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 ∈ ℝ+)
589586, 587, 588lemul1d 13014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (1 ≤ (𝑗𝑘) ↔ (1 · 𝑇) ≤ ((𝑗𝑘) · 𝑇)))
590585, 589mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → (1 · 𝑇) ≤ ((𝑗𝑘) · 𝑇))
591573, 590eqbrtrd 5124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 < 𝑗) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
592572, 591syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
593592adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
5945933adantll3 45009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝑇 ≤ ((𝑗𝑘) · 𝑇))
595392, 394, 399, 523, 594letrd 11307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑗𝑘) · 𝑇))
596 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))))
597596oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
598597adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
599267, 445syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜓𝐴 ⊆ ℝ)
600599sselda 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
601600adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
602601recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℂ)
603602subidd 11497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) = 0)
604603oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
605604adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
606598, 605eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
6076063adantl2 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
608607adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (0 + ((𝑗𝑘) · 𝑇)))
609374, 373subcld 11509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑗𝑘) ∈ ℂ)
610609, 375mulcld 11170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑗𝑘) · 𝑇) ∈ ℂ)
611610addlidd 11351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
6126113adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
613612ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (0 + ((𝑗𝑘) · 𝑇)) = ((𝑗𝑘) · 𝑇))
614608, 613eqtr2d 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑗𝑘) · 𝑇) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
615595, 614breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
616615adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
617391ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ∈ ℝ)
618599sselda 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
619618adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
620601, 619resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
6216203adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
622621ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
623621, 398readdcld 11179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
624623ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
625267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓𝑘𝑗) → 𝜑)
6266253ad2antl1 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → 𝜑)
627626ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝜑)
628 simpl3 1194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
629628ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
630 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)))
631619ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
632601ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
633631, 632lenltd 11296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))))
634630, 633mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
635 eqcom 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) ↔ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
636635notbii 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
637636biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇)) → ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
638637adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))
639 ioran 985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (¬ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))) ↔ (¬ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∧ ¬ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))))
640634, 638, 639sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇))))
641632, 631leloed 11293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)) ↔ ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ∨ (𝑏 + (𝑘 · 𝑇)) = (𝑎 + (𝑗 · 𝑇)))))
642640, 641mtbird 325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
6436423adantll2 45008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
644643adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇)))
645619adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
6466453adantl2 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
647646ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
648601adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
6496483adantl2 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
650649ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
651647, 650ltnled 11297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)) ↔ ¬ (𝑏 + (𝑘 · 𝑇)) ≤ (𝑎 + (𝑗 · 𝑇))))
652644, 651mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)))
653 simp2l 1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
654 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐𝐴 ↔ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
655654anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
656 breq1 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐 < (𝑏 + (𝑘 · 𝑇)) ↔ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))))
657655, 6563anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) ↔ (𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇)))))
658 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑏 + (𝑘 · 𝑇)) − 𝑐) = ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
659658breq2d 5114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐) ↔ 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
660657, 659imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)) ↔ ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))))
661 simp2r 1201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)
662 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑑𝐴 ↔ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))
663662anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → ((𝑐𝐴𝑑𝐴) ↔ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
664 breq2 5106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑐 < 𝑑𝑐 < (𝑏 + (𝑘 · 𝑇))))
665663, 6643anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇)))))
666 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝑑𝑐) = ((𝑏 + (𝑘 · 𝑇)) − 𝑐))
667666breq2d 5114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)))
668665, 667imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑑 = (𝑏 + (𝑘 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐))))
669668, 515vtoclg 3517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐)))
670661, 669mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑐𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑐 < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − 𝑐))
671660, 670vtoclg 3517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
672653, 671mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
673627, 629, 652, 672syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
674395ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → (𝑗𝑘) ∈ ℝ)
675293ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 𝑇 ∈ ℝ)
676 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑘𝑗)
677283ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ)
678286ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ)
679677, 678subge0d 11744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → (0 ≤ (𝑗𝑘) ↔ 𝑘𝑗))
680676, 679mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘𝑗) → 0 ≤ (𝑗𝑘))
681680adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ (𝑗𝑘))
682352rpge0d 12975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → 0 ≤ 𝑇)
683682ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ 𝑇)
684674, 675, 681, 683mulge0d 11731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘𝑗) → 0 ≤ ((𝑗𝑘) · 𝑇))
6856843adantl3 1169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → 0 ≤ ((𝑗𝑘) · 𝑇))
686621adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
687398adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑗𝑘) · 𝑇) ∈ ℝ)
688686, 687addge01d 11742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → (0 ≤ ((𝑗𝑘) · 𝑇) ↔ ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇))))
689685, 688mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
690689ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
691617, 622, 624, 673, 690letrd 11307 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) = (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
692616, 691pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
693372, 378eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏𝑎) + ((𝑘𝑗) · 𝑇)))
694693oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) + ((𝑗𝑘) · 𝑇)))
695365, 369subcld 11509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏𝑎) ∈ ℂ)
696373, 374subcld 11509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘𝑗) ∈ ℂ)
697696, 375mulcld 11170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) · 𝑇) ∈ ℂ)
698695, 697, 610addassd 11172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏𝑎) + ((𝑘𝑗) · 𝑇)) + ((𝑗𝑘) · 𝑇)) = ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))))
699341, 336, 336, 341subadd4b 45254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑗) + (𝑗𝑘)) = ((𝑘𝑘) + (𝑗𝑗)))
700699adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘𝑗) + (𝑗𝑘)) = ((𝑘𝑘) + (𝑗𝑗)))
701700oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) + (𝑗𝑘)) · 𝑇) = (((𝑘𝑘) + (𝑗𝑗)) · 𝑇))
702696, 609, 375adddird 11175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) + (𝑗𝑘)) · 𝑇) = (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇)))
703340subidd 11497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ ℤ → (𝑘𝑘) = 0)
704703adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘𝑘) = 0)
705562adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗𝑗) = 0)
706704, 705oveq12d 7387 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑘) + (𝑗𝑗)) = (0 + 0))
707 00id 11325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (0 + 0) = 0
708706, 707eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑘) + (𝑗𝑗)) = 0)
709708oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑘𝑘) + (𝑗𝑗)) · 𝑇) = (0 · 𝑇))
710709adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑘) + (𝑗𝑗)) · 𝑇) = (0 · 𝑇))
711701, 702, 7103eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇)) = (0 · 𝑇))
712711oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))) = ((𝑏𝑎) + (0 · 𝑇)))
713318mul02d 11348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (0 · 𝑇) = 0)
714713oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → ((𝑏𝑎) + (0 · 𝑇)) = ((𝑏𝑎) + 0))
715364, 368subcld 11509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜓 → (𝑏𝑎) ∈ ℂ)
716715addridd 11350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜓 → ((𝑏𝑎) + 0) = (𝑏𝑎))
717714, 716eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜓 → ((𝑏𝑎) + (0 · 𝑇)) = (𝑏𝑎))
718717adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (0 · 𝑇)) = (𝑏𝑎))
719712, 718eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑏𝑎) + (((𝑘𝑗) · 𝑇) + ((𝑗𝑘) · 𝑇))) = (𝑏𝑎))
720694, 698, 7193eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
7217203adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
722721ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
723692, 722breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (𝑏𝑎))
724 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
725 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇)))
7266013adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
727726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7286193adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
729728adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
730727, 729ltnled 11297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)) ↔ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))))
731725, 730mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
732731adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
7335353adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
734733adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 = (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇))
7356003adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7363023ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑏 ∈ ℝ)
737735, 736resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) ∈ ℝ)
7382933ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑇 ∈ ℝ)
7395313ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝑇 ≠ 0)
740737, 738, 739redivcld 11986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑘 ∈ ℤ ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7417403adant3l 1181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓𝑘 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7427413adant2l 1179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
743742adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7446183adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
7453023ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑏 ∈ ℝ)
746744, 745resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) ∈ ℝ)
7472933ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑇 ∈ ℝ)
7485313ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝑇 ≠ 0)
749746, 747, 748redivcld 11986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7507493adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7517503adant2r 1180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
752751adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) ∈ ℝ)
7532843ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑗 ∈ ℝ)
754753adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑗 ∈ ℝ)
755726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
7563023ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑏 ∈ ℝ)
757756adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑏 ∈ ℝ)
758755, 757resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) ∈ ℝ)
759728adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
760759, 757resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) − 𝑏) ∈ ℝ)
7613523ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℝ+)
762761adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑇 ∈ ℝ+)
763601adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) ∈ ℝ)
764619adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
765302ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑏 ∈ ℝ)
766 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇)))
767763, 764, 765, 766ltsub1dd 11766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) < ((𝑎 + (𝑗 · 𝑇)) − 𝑏))
7687673adantl2 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + (𝑘 · 𝑇)) − 𝑏) < ((𝑎 + (𝑗 · 𝑇)) − 𝑏))
769758, 760, 762, 768ltdiv1dd 13028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) < (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇))
770554, 570eqbrtrd 5124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
7717703adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
772771adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑎 + (𝑗 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
773743, 752, 754, 769, 772lttrd 11311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → (((𝑏 + (𝑘 · 𝑇)) − 𝑏) / 𝑇) < 𝑗)
774734, 773eqbrtrd 5124 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 < 𝑗)
775774adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝑘 < 𝑗)
776732, 775syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝑘 < 𝑗)
777391adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ∈ ℝ)
778393adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ∈ ℝ)
779623adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) ∈ ℝ)
780522adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸𝑇)
781 peano2rem 11465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → (𝑗 − 1) ∈ ℝ)
782753, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑗 − 1) ∈ ℝ)
7832873ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝑘 ∈ ℝ)
784782, 783resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗 − 1) − 𝑘) ∈ ℝ)
785784, 393remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ∈ ℝ)
786785adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑗 − 1) − 𝑘) · 𝑇) ∈ ℝ)
787753adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℝ)
788330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℝ)
789787, 788resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
790286ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
7917903ad2antl2 1187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
792789, 791resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → ((𝑗 − 1) − 𝑘) ∈ ℝ)
793682adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑘 < (𝑗 − 1)) → 0 ≤ 𝑇)
7947933ad2antl1 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 0 ≤ 𝑇)
795283ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℝ)
796330a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℝ)
797795, 796resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
798 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 < (𝑗 − 1))
799 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℤ)
800 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑗 ∈ ℤ)
801 1zzd 12540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ∈ ℤ)
802800, 801zsubcld 12619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℤ)
803 zltlem1 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑘 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) → (𝑘 < (𝑗 − 1) ↔ 𝑘 ≤ ((𝑗 − 1) − 1)))
804799, 802, 803syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → (𝑘 < (𝑗 − 1) ↔ 𝑘 ≤ ((𝑗 − 1) − 1)))
805798, 804mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 𝑘 ≤ ((𝑗 − 1) − 1))
806790, 797, 796, 805lesubd 11758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < (𝑗 − 1)) → 1 ≤ ((𝑗 − 1) − 𝑘))
8078063ad2antl2 1187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 1 ≤ ((𝑗 − 1) − 𝑘))
808778, 792, 794, 807lemulge12d 12097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ≤ (((𝑗 − 1) − 𝑘) · 𝑇))
809336, 337, 341sub32d 11541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑗 − 1) − 𝑘) = ((𝑗𝑘) − 1))
810809oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) − 1) · 𝑇))
811810adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) − 1) · 𝑇))
812 1cnd 11145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 1 ∈ ℂ)
813609, 812, 375subdird 11611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗𝑘) − 1) · 𝑇) = (((𝑗𝑘) · 𝑇) − (1 · 𝑇)))
814319oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝜓 → (((𝑗𝑘) · 𝑇) − (1 · 𝑇)) = (((𝑗𝑘) · 𝑇) − 𝑇))
815814adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗𝑘) · 𝑇) − (1 · 𝑇)) = (((𝑗𝑘) · 𝑇) − 𝑇))
816811, 813, 8153eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) · 𝑇) − 𝑇))
8178163adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) = (((𝑗𝑘) · 𝑇) − 𝑇))
818728, 726resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ∈ ℝ)
819269, 271, 276, 274iccsuble 45490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ (𝐶𝐵))
820819, 278breqtrrdi 5144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ 𝑇)
8218203adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇))) ≤ 𝑇)
822818, 393, 398, 821lesub2dd 11771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − 𝑇) ≤ (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))))
823817, 822eqbrtrd 5124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))))
8246103adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑗𝑘) · 𝑇) ∈ ℂ)
825728recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
8266023adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏 + (𝑘 · 𝑇)) ∈ ℂ)
827824, 825, 826subsub2d 11538 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))) = (((𝑗𝑘) · 𝑇) + ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))))
828621recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℂ)
829824, 828addcomd 11352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) + ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇)))) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
830827, 829eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗𝑘) · 𝑇) − ((𝑎 + (𝑗 · 𝑇)) − (𝑏 + (𝑘 · 𝑇)))) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
831823, 830breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
832831adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑗 − 1) − 𝑘) · 𝑇) ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
833778, 786, 779, 808, 832letrd 11307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝑇 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
834777, 778, 779, 780, 833letrd 11307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
835721adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (𝑏𝑎))
836834, 835breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
837836adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
838837adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
839 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
840 simpll2 1214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ))
841 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 < 𝑗)
842 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → ¬ 𝑘 < (𝑗 − 1))
843581, 582, 580, 584lesubd 11758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗) → 𝑘 ≤ (𝑗 − 1))
8448433adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ≤ (𝑗 − 1))
845 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → ¬ 𝑘 < (𝑗 − 1))
846284, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑗 − 1) ∈ ℝ)
847846adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
848286ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
849847, 848lenltd 11296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → ((𝑗 − 1) ≤ 𝑘 ↔ ¬ 𝑘 < (𝑗 − 1)))
850845, 849mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ≤ 𝑘)
8518503adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ≤ 𝑘)
8525803adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 ∈ ℝ)
8538463ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑗 − 1) ∈ ℝ)
854852, 853letri3d 11292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → (𝑘 = (𝑗 − 1) ↔ (𝑘 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑘)))
855844, 851, 854mpbir2and 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
856840, 841, 842, 855syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
857856adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝑘 = (𝑗 − 1))
858 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝜓)
859 simpl2l 1227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝑗 ∈ ℤ)
860 simpl3l 1229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
861 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 = (𝑗 − 1) → (𝑘 · 𝑇) = ((𝑗 − 1) · 𝑇))
862861oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 = (𝑗 − 1) → (𝑏 + (𝑘 · 𝑇)) = (𝑏 + ((𝑗 − 1) · 𝑇)))
863862eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 = (𝑗 − 1) → (𝑏 + ((𝑗 − 1) · 𝑇)) = (𝑏 + (𝑘 · 𝑇)))
864863adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) = (𝑏 + (𝑘 · 𝑇)))
865 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)
866864, 865eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
867866adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ∧ 𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
8688673ad2antl3 1188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
869860, 868jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴))
870 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
8718703adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴))
872744adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
8732703ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℝ)
874873adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐶 ∈ ℝ)
875268adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐵 ∈ ℝ)
876270adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℝ)
877 elicc2 13348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)))
878875, 876, 877syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)))
879275, 878mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ((𝑎 + (𝑗 · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑎 + (𝑗 · 𝑇)) ∧ (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶))
880879simp3d 1144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
8818803adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
882881adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
883 nne 2929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝐶 ≠ (𝑎 + (𝑗 · 𝑇)) ↔ 𝐶 = (𝑎 + (𝑗 · 𝑇)))
884540, 370pncand 11510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = 𝑎)
885884eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → 𝑎 = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
886885adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
887 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐶 = (𝑎 + (𝑗 · 𝑇)) → (𝐶 − (𝑗 · 𝑇)) = ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)))
888887eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐶 = (𝑎 + (𝑗 · 𝑇)) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = (𝐶 − (𝑗 · 𝑇)))
889888adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → ((𝑎 + (𝑗 · 𝑇)) − (𝑗 · 𝑇)) = (𝐶 − (𝑗 · 𝑇)))
890278oveq2i 7380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝐵 + 𝑇) = (𝐵 + (𝐶𝐵))
891267, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜓𝐵 ∈ ℂ)
892267, 160syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝜓𝐶 ∈ ℂ)
893891, 892pncan3d 11512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝜓 → (𝐵 + (𝐶𝐵)) = 𝐶)
894890, 893eqtr2id 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝜓𝐶 = (𝐵 + 𝑇))
895894oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝜓 → (𝐶 − (𝑗 · 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
896895adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐶 − (𝑗 · 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
897891adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → 𝐵 ∈ ℂ)
898897, 370, 547subsub3d 11539 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐵 − ((𝑗 · 𝑇) − 𝑇)) = ((𝐵 + 𝑇) − (𝑗 · 𝑇)))
899550, 547mulsubfacd 11615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → ((𝑗 · 𝑇) − 𝑇) = ((𝑗 − 1) · 𝑇))
900899oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝐵 − ((𝑗 · 𝑇) − 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
901896, 898, 9003eqtr2d 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → (𝐶 − (𝑗 · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
902901adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → (𝐶 − (𝑗 · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
903886, 889, 9023eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜓𝑗 ∈ ℤ) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
9049033adantl3 1169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
905904adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = (𝐵 − ((𝑗 − 1) · 𝑇)))
906 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = (𝐵 − ((𝑗 − 1) · 𝑇)))
907906eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (𝐵 − ((𝑗 − 1) · 𝑇)) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)))
908907ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → (𝐵 − ((𝑗 − 1) · 𝑇)) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)))
909364ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝑏 ∈ ℂ)
910 1cnd 11145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜓𝑗 ∈ ℤ) → 1 ∈ ℂ)
911550, 910subcld 11509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓𝑗 ∈ ℤ) → (𝑗 − 1) ∈ ℂ)
912911, 547mulcld 11170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓𝑗 ∈ ℤ) → ((𝑗 − 1) · 𝑇) ∈ ℂ)
913912adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑗 − 1) · 𝑇) ∈ ℂ)
914909, 913pncand 11510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜓𝑗 ∈ ℤ) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
9159143adantl3 1169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
916915adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − ((𝑗 − 1) · 𝑇)) = 𝑏)
917905, 908, 9163eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ 𝐶 = (𝑎 + (𝑗 · 𝑇))) → 𝑎 = 𝑏)
918883, 917sylan2b 594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ ¬ 𝐶 ≠ (𝑎 + (𝑗 · 𝑇))) → 𝑎 = 𝑏)
919309, 358ltned 11286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝜓𝑎𝑏)
920919neneqd 2930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜓 → ¬ 𝑎 = 𝑏)
9219203ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) → ¬ 𝑎 = 𝑏)
922921ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ ¬ 𝐶 ≠ (𝑎 + (𝑗 · 𝑇))) → ¬ 𝑎 = 𝑏)
923918, 922condan 817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐶 ≠ (𝑎 + (𝑗 · 𝑇)))
924872, 874, 882, 923leneltd 11304 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
925871, 924sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
926267ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝜑)
927 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
928926, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐶𝐴)
929 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) < 𝐶)
930 simp2l 1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴)
931654anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝑐𝐴𝐶𝐴) ↔ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴)))
932 breq1 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝑐 < 𝐶 ↔ (𝑎 + (𝑗 · 𝑇)) < 𝐶))
933931, 9323anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) ↔ (𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶)))
934 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐶𝑐) = (𝐶 − (𝑎 + (𝑗 · 𝑇))))
935934breq2d 5114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (𝐸 ≤ (𝐶𝑐) ↔ 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇)))))
936933, 935imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 = (𝑎 + (𝑗 · 𝑇)) → (((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐)) ↔ ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))))
937 simp2r 1201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐶𝐴)
938403anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → ((𝑐𝐴𝑑𝐴) ↔ (𝑐𝐴𝐶𝐴)))
939 breq2 5106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → (𝑐 < 𝑑𝑐 < 𝐶))
940938, 9393anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑑 = 𝐶 → ((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) ↔ (𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶)))
941 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑑 = 𝐶 → (𝑑𝑐) = (𝐶𝑐))
942941breq2d 5114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑑 = 𝐶 → (𝐸 ≤ (𝑑𝑐) ↔ 𝐸 ≤ (𝐶𝑐)))
943940, 942imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑑 = 𝐶 → (((𝜑 ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐 < 𝑑) → 𝐸 ≤ (𝑑𝑐)) ↔ ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐))))
944943, 515vtoclg 3517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐶𝐴 → ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐)))
945937, 944mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑐𝐴𝐶𝐴) ∧ 𝑐 < 𝐶) → 𝐸 ≤ (𝐶𝑐))
946936, 945vtoclg 3517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇)))))
947930, 946mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴𝐶𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
948926, 927, 928, 929, 947syl121anc 1377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓 ∧ (𝑎 + (𝑗 · 𝑇)) ∈ 𝐴) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
949948adantlrr 721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
9509493adantl2 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
951950adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (𝐶 − (𝑎 + (𝑗 · 𝑇))))
952892adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℂ)
953599sselda 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
954953recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
955952, 954npcand 11513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) = 𝐶)
956955eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐶 = ((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))))
957956oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
958957adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
9599583adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
960959adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
961 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) = (𝐶𝐵))
962961oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → ((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) = ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))))
963962oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
964963adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝐶 − (𝑏 + ((𝑗 − 1) · 𝑇))) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))))
965278eqcomi 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐶𝐵) = 𝑇
966965oveq1i 7379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) = (𝑇 + (𝑏 + ((𝑗 − 1) · 𝑇)))
967966a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) = (𝑇 + (𝑏 + ((𝑗 − 1) · 𝑇))))
968318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝑇 ∈ ℂ)
969968, 954addcomd 11352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑇 + (𝑏 + ((𝑗 − 1) · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇))
970967, 969eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇))
971970oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
972971adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
9739723adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
974973adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))))
975954adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
9769753adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
977976adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℂ)
9783183ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℂ)
979978adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝑇 ∈ ℂ)
980618adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℝ)
981980recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
9829813adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
983982adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑎 + (𝑗 · 𝑇)) ∈ ℂ)
984977, 979, 983addsubd 11530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝑏 + ((𝑗 − 1) · 𝑇)) + 𝑇) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
985974, 984eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (((𝐶𝐵) + (𝑏 + ((𝑗 − 1) · 𝑇))) − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
986960, 964, 9853eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
987986adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → (𝐶 − (𝑎 + (𝑗 · 𝑇))) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
988951, 987breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) ∧ (𝑎 + (𝑗 · 𝑇)) < 𝐶) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
989925, 988mpdan 687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
990 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝜓)
991 simpl3r 1230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
992 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵)
9932683ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 ∈ ℝ)
9949533adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
995272sselda 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ (𝐵[,]𝐶))
996268adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐵 ∈ ℝ)
997270adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐶 ∈ ℝ)
998 elicc2 13348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ≤ 𝐶)))
999996, 997, 998syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ (𝐵[,]𝐶) ↔ ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ≤ 𝐶)))
1000995, 999mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ ∧ 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)) ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ≤ 𝐶))
10011000simp2d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) → 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)))
100210013adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 ≤ (𝑏 + ((𝑗 − 1) · 𝑇)))
1003 neqne 2933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵 → (𝑏 + ((𝑗 − 1) · 𝑇)) ≠ 𝐵)
100410033ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → (𝑏 + ((𝑗 − 1) · 𝑇)) ≠ 𝐵)
1005993, 994, 1002, 1004leneltd 11304 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜓 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))
1006990, 991, 992, 1005syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))
10073903ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐸 ∈ ℝ)
10081007adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ∈ ℝ)
1009953adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
101010093adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ ℝ)
10112683ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℝ)
10121010, 1011resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ∈ ℝ)
10131012adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ∈ ℝ)
10141009, 980resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℝ)
1015293adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝑇 ∈ ℝ)
10161014, 1015readdcld 11179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) ∈ ℝ)
101710163adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) ∈ ℝ)
10181017adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) ∈ ℝ)
1019267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝜑)
102010193ad2antl1 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝜑)
10211020, 143syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐵𝐴)
1022 simpl3r 1230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
1023 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))
1024 simp2r 1201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)
1025 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝑑𝐴 ↔ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴))
10261025anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → ((𝐵𝐴𝑑𝐴) ↔ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)))
1027 breq2 5106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝐵 < 𝑑𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))))
10281026, 10273anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → ((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) ↔ (𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇)))))
1029 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝑑𝐵) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))
10301029breq2d 5114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (𝐸 ≤ (𝑑𝐵) ↔ 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵)))
10311028, 1030imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑑 = (𝑏 + ((𝑗 − 1) · 𝑇)) → (((𝜑 ∧ (𝐵𝐴𝑑𝐴) ∧ 𝐵 < 𝑑) → 𝐸 ≤ (𝑑𝐵)) ↔ ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))))
10321031, 517vtoclg 3517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴 → ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵)))
10331024, 1032mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝐵𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))
10341020, 1021, 1022, 1023, 1033syl121anc 1377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵))
1035268adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℝ)
1036980, 1035resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − 𝐵) ∈ ℝ)
1037965, 1015eqeltrid 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝐶𝐵) ∈ ℝ)
1038270adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐶 ∈ ℝ)
1039880adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑎 + (𝑗 · 𝑇)) ≤ 𝐶)
1040980, 1038, 1035, 1039lesub1dd 11770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑎 + (𝑗 · 𝑇)) − 𝐵) ≤ (𝐶𝐵))
10411036, 1037, 1014, 1040leadd2dd 11769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑎 + (𝑗 · 𝑇)) − 𝐵)) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝐶𝐵)))
1042975, 981npcand 11513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))) = (𝑏 + ((𝑗 − 1) · 𝑇)))
10431042eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (𝑏 + ((𝑗 − 1) · 𝑇)) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))))
10441043oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) = ((((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))) − 𝐵))
10451014recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) ∈ ℂ)
1046891adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐵 ∈ ℂ)
10471045, 981, 1046addsubassd 11529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝑎 + (𝑗 · 𝑇))) − 𝐵) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑎 + (𝑗 · 𝑇)) − 𝐵)))
10481044, 1047eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑎 + (𝑗 · 𝑇)) − 𝐵)))
1049278oveq2i 7380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝐶𝐵))
10501049a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + (𝐶𝐵)))
10511041, 1048, 10503brtr4d 5134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜓 ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
105210513adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10531052adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → ((𝑏 + ((𝑗 − 1) · 𝑇)) − 𝐵) ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10541008, 1013, 1018, 1034, 1053letrd 11307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ 𝐵 < (𝑏 + ((𝑗 − 1) · 𝑇))) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10551006, 1054syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) ∧ ¬ (𝑏 + ((𝑗 − 1) · 𝑇)) = 𝐵) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
1056989, 1055pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜓𝑗 ∈ ℤ ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + ((𝑗 − 1) · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
1057858, 859, 869, 1056syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝐸 ≤ (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
1058720eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑏𝑎) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
10591058adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 = (𝑗 − 1)) → (𝑏𝑎) = (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)))
1060862oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 = (𝑗 − 1) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
10611060adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) = ((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))))
1062 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 = (𝑗 − 1) → (𝑗𝑘) = (𝑗 − (𝑗 − 1)))
10631062oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 = (𝑗 − 1) → ((𝑗𝑘) · 𝑇) = ((𝑗 − (𝑗 − 1)) · 𝑇))
10641063adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑗𝑘) · 𝑇) = ((𝑗 − (𝑗 − 1)) · 𝑇))
1065 1cnd 11145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑗 ∈ ℤ → 1 ∈ ℂ)
1066335, 1065nncand 11514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℤ → (𝑗 − (𝑗 − 1)) = 1)
10671066oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑗 ∈ ℤ → ((𝑗 − (𝑗 − 1)) · 𝑇) = (1 · 𝑇))
10681067ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑗 − (𝑗 − 1)) · 𝑇) = (1 · 𝑇))
1069319ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → (1 · 𝑇) = 𝑇)
10701064, 1068, 10693eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → ((𝑗𝑘) · 𝑇) = 𝑇)
10711061, 1070oveq12d 7387 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜓𝑗 ∈ ℤ) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10721071adantlrr 721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + (𝑘 · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + ((𝑗𝑘) · 𝑇)) = (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇))
10731059, 1072eqtr2d 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (𝑏𝑎))
107410733adantl3 1169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → (((𝑏 + ((𝑗 − 1) · 𝑇)) − (𝑎 + (𝑗 · 𝑇))) + 𝑇) = (𝑏𝑎))
10751057, 1074breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 = (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
1076839, 857, 1075syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) ∧ ¬ 𝑘 < (𝑗 − 1)) → 𝐸 ≤ (𝑏𝑎))
1077838, 1076pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘 < 𝑗) ∧ (𝑏 + (𝑘 · 𝑇)) < (𝑎 + (𝑗 · 𝑇))) → 𝐸 ≤ (𝑏𝑎))
1078724, 776, 732, 1077syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) ∧ ¬ (𝑎 + (𝑗 · 𝑇)) ≤ (𝑏 + (𝑘 · 𝑇))) → 𝐸 ≤ (𝑏𝑎))
1079723, 1078pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑘𝑗) → 𝐸 ≤ (𝑏𝑎))
1080387, 1079mpdan 687 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (𝑏𝑎))
1081309, 302, 358ltled 11298 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜓𝑎𝑏)
1082309, 302, 1081abssuble0d 15377 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜓 → (abs‘(𝑎𝑏)) = (𝑏𝑎))
10831082eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜓 → (𝑏𝑎) = (abs‘(𝑎𝑏)))
108410833ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑏𝑎) = (abs‘(𝑎𝑏)))
10851080, 1084breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜓 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏)))
108610853exp 1119 . . . . . . . . . . . . . . . . . . . . 21 (𝜓 → ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝐸 ≤ (abs‘(𝑎𝑏)))))
10871086rexlimdvv 3191 . . . . . . . . . . . . . . . . . . . 20 (𝜓 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) → 𝐸 ≤ (abs‘(𝑎𝑏))))
1088264, 1087mpd 15 . . . . . . . . . . . . . . . . . . 19 (𝜓𝐸 ≤ (abs‘(𝑎𝑏)))
1089263, 1088sylbir 235 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏)))
1090262, 1089chvarvv 1989 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑏)))
1091249, 1090chvarvv 1989 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1092229, 235, 236, 1091syl21anc 837 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑦 < 𝑧) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1093 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → ¬ 𝑦 < 𝑧)
1094 simpl3 1194 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑦𝑧)
1095 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑦 ∈ ℝ)
1096 simpl2 1193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑧 ∈ ℝ)
10971095, 1096lttri2d 11289 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → (𝑦𝑧 ↔ (𝑦 < 𝑧𝑧 < 𝑦)))
10981094, 1097mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → (𝑦 < 𝑧𝑧 < 𝑦))
10991098ord 864 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → (¬ 𝑦 < 𝑧𝑧 < 𝑦))
11001093, 1099mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) ∧ ¬ 𝑦 < 𝑧) → 𝑧 < 𝑦)
11011100adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ¬ 𝑦 < 𝑧) → 𝑧 < 𝑦)
11021101adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑦 < 𝑧) → 𝑧 < 𝑦)
1103 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → 𝜑)
1104 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → 𝑧 ∈ ℝ)
1105 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → 𝑦 ∈ ℝ)
1106 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → 𝑧 < 𝑦)
11071104, 1105, 11063jca 1128 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 𝑦) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))
11081107adantll 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑧 < 𝑦) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))
11091108adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))
1110 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = 𝑖 → (𝑗 · 𝑇) = (𝑖 · 𝑇))
11111110oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑖 → (𝑦 + (𝑗 · 𝑇)) = (𝑦 + (𝑖 · 𝑇)))
11121111eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑖 → ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑖 · 𝑇)) ∈ 𝐴))
11131112anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 𝑖 → (((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)))
1114 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 = 𝑙 → (𝑘 · 𝑇) = (𝑙 · 𝑇))
11151114oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑇)) = (𝑧 + (𝑙 · 𝑇)))
11161115eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑙 → ((𝑧 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴))
11171116anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑙 → (((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴)))
11181113, 1117cbvrex2vw 3218 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴))
1119 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝑘 → (𝑖 · 𝑇) = (𝑘 · 𝑇))
11201119oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑘 → (𝑦 + (𝑖 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
11211120eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 = 𝑘 → ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11221121anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑘 → (((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴)))
1123 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑗 → (𝑙 · 𝑇) = (𝑗 · 𝑇))
11241123oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑙 = 𝑗 → (𝑧 + (𝑙 · 𝑇)) = (𝑧 + (𝑗 · 𝑇)))
11251124eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑙 = 𝑗 → ((𝑧 + (𝑙 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
11261125anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = 𝑗 → (((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴)))
11271122, 1126cbvrex2vw 3218 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ∃𝑘 ∈ ℤ ∃𝑗 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
1128 rexcom 3264 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑘 ∈ ℤ ∃𝑗 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
1129 ancom 460 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴) ↔ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
113011292rexbii 3109 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11311127, 1128, 11303bitri 297 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11321118, 1131sylbb 219 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11331132ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
1134 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑦 → (𝑏 ∈ ℝ ↔ 𝑦 ∈ ℝ))
1135 breq2 5106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑦 → (𝑧 < 𝑏𝑧 < 𝑦))
11361134, 11353anbi23d 1441 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑦 → ((𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏) ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)))
11371136anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → ((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ↔ (𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦))))
1138 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 = 𝑦 → (𝑏 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
11391138eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑦 → ((𝑏 + (𝑘 · 𝑇)) ∈ 𝐴 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))
11401139anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑦 → (((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)))
114111402rexbidv 3200 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)))
11421137, 1141anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴))))
1143 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑦 → (𝑧𝑏) = (𝑧𝑦))
11441143fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → (abs‘(𝑧𝑏)) = (abs‘(𝑧𝑦)))
11451144breq2d 5114 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → (𝐸 ≤ (abs‘(𝑧𝑏)) ↔ 𝐸 ≤ (abs‘(𝑧𝑦))))
11461142, 1145imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑦 → ((((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑏))) ↔ (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑦)))))
1147 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → (𝑎 ∈ ℝ ↔ 𝑧 ∈ ℝ))
1148 breq1 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → (𝑎 < 𝑏𝑧 < 𝑏))
11491147, 11483anbi13d 1440 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑧 → ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ↔ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)))
11501149anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑧 → ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ↔ (𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏))))
1151 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑧 → (𝑎 + (𝑗 · 𝑇)) = (𝑧 + (𝑗 · 𝑇)))
11521151eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ↔ (𝑧 + (𝑗 · 𝑇)) ∈ 𝐴))
11531152anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑧 → (((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
115411532rexbidv 3200 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑧 → (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)))
11551150, 1154anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑧 → (((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) ↔ ((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))))
1156 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑧 → (𝑎𝑏) = (𝑧𝑏))
11571156fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑧 → (abs‘(𝑎𝑏)) = (abs‘(𝑧𝑏)))
11581157breq2d 5114 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑧 → (𝐸 ≤ (abs‘(𝑎𝑏)) ↔ 𝐸 ≤ (abs‘(𝑧𝑏))))
11591155, 1158imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑧 → ((((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑎𝑏))) ↔ (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑏)))))
11601159, 1089chvarvv 1989 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑏)))
11611146, 1160chvarvv 1989 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑧 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑧𝑦)))
11621103, 1109, 1133, 1161syl21anc 837 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → 𝐸 ≤ (abs‘(𝑧𝑦)))
1163 recn 11134 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
11641163adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
1165 recn 11134 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
11661165adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
11671164, 1166abssubd 15398 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
11681167adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
11691168ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
11701162, 1169breqtrd 5128 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ 𝑧 < 𝑦) → 𝐸 ≤ (abs‘(𝑦𝑧)))
11711170ex 412 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑧 < 𝑦𝐸 ≤ (abs‘(𝑦𝑧))))
117211713adantlr3 45007 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → (𝑧 < 𝑦𝐸 ≤ (abs‘(𝑦𝑧))))
11731172adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑦 < 𝑧) → (𝑧 < 𝑦𝐸 ≤ (abs‘(𝑦𝑧))))
11741102, 1173mpd 15 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) ∧ ¬ 𝑦 < 𝑧) → 𝐸 ≤ (abs‘(𝑦𝑧)))
11751092, 1174pm2.61dan 812 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ 𝐴)) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1176196, 204, 228, 1175syl21anc 837 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝐸 ≤ (abs‘(𝑦𝑧)))
1177389ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → 𝐸 ∈ ℝ)
1178198, 201resubcld 11582 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → (𝑦𝑧) ∈ ℝ)
11791178recnd 11178 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → (𝑦𝑧) ∈ ℂ)
11801179abscld 15381 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → (abs‘(𝑦𝑧)) ∈ ℝ)
11811180adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → (abs‘(𝑦𝑧)) ∈ ℝ)
11821177, 1181lenltd 11296 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → (𝐸 ≤ (abs‘(𝑦𝑧)) ↔ ¬ (abs‘(𝑦𝑧)) < 𝐸))
11831176, 1182mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → ¬ (abs‘(𝑦𝑧)) < 𝐸)
1184 nan 829 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸)) ↔ (((𝜑 ∧ (𝑦𝐻𝑧𝐻)) ∧ 𝑦𝑧) → ¬ (abs‘(𝑦𝑧)) < 𝐸))
11851183, 1184mpbir 231 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐻𝑧𝐻)) → ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
11861185ralrimivva 3178 . . . . . . . . . 10 (𝜑 → ∀𝑦𝐻𝑧𝐻 ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
1187 ralnex2 3113 . . . . . . . . . 10 (∀𝑦𝐻𝑧𝐻 ¬ (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸) ↔ ¬ ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
11881186, 1187sylib 218 . . . . . . . . 9 (𝜑 → ¬ ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
11891188ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 𝐾) ∧ 𝑥 ∈ ((limPt‘𝐽)‘𝐻)) → ¬ ∃𝑦𝐻𝑧𝐻 (𝑦𝑧 ∧ (abs‘(𝑦𝑧)) < 𝐸))
1190195, 1189pm2.65da 816 . . . . . . 7 ((𝜑𝑥 𝐾) → ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐻))
11911190intnanrd 489 . . . . . 6 ((𝜑𝑥 𝐾) → ¬ (𝑥 ∈ ((limPt‘𝐽)‘𝐻) ∧ 𝑥 ∈ (𝑋[,]𝑌)))
1192 elin 3927 . . . . . 6 (𝑥 ∈ (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)) ↔ (𝑥 ∈ ((limPt‘𝐽)‘𝐻) ∧ 𝑥 ∈ (𝑋[,]𝑌)))
11931191, 1192sylnibr 329 . . . . 5 ((𝜑𝑥 𝐾) → ¬ 𝑥 ∈ (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)))
119413a1i 11 . . . . . 6 ((𝜑𝑥 𝐾) → 𝐽 ∈ Top)
119514adantr 480 . . . . . 6 ((𝜑𝑥 𝐾) → (𝑋[,]𝑌) ⊆ ℝ)
119611adantr 480 . . . . . 6 ((𝜑𝑥 𝐾) → 𝐻 ⊆ (𝑋[,]𝑌))
119717, 4restlp 23046 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ 𝐻 ⊆ (𝑋[,]𝑌)) → ((limPt‘𝐾)‘𝐻) = (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)))
11981194, 1195, 1196, 1197syl3anc 1373 . . . . 5 ((𝜑𝑥 𝐾) → ((limPt‘𝐾)‘𝐻) = (((limPt‘𝐽)‘𝐻) ∩ (𝑋[,]𝑌)))
11991193, 1198neleqtrrd 2851 . . . 4 ((𝜑𝑥 𝐾) → ¬ 𝑥 ∈ ((limPt‘𝐾)‘𝐻))
12001199nrexdv 3128 . . 3 (𝜑 → ¬ ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
12011200adantr 480 . 2 ((𝜑 ∧ ¬ 𝐻 ∈ Fin) → ¬ ∃𝑥 𝐾𝑥 ∈ ((limPt‘𝐾)‘𝐻))
120228, 1201condan 817 1 (𝜑𝐻 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  cin 3910  wss 3911  c0 4292  cop 4591   cuni 4867   class class class wbr 5102   I cid 5525   Or wor 5538   × cxp 5629  dom cdm 5631  ran crn 5632  cres 5633  ccom 5635  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  infcinf 9368  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cz 12505  +crp 12927  (,)cioo 13282  [,]cicc 13285  abscabs 15176  t crest 17359  topGenctg 17376  Topctop 22756  limPtclp 22997  Compccmp 23249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-icc 13289  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-rest 17361  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-cmp 23250
This theorem is referenced by:  fourierdlem54  46131
  Copyright terms: Public domain W3C validator