Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icccncfext Structured version   Visualization version   GIF version

Theorem icccncfext 42219
Description: A continuous function on a closed interval can be extended to a continuous function on the whole real line. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
icccncfext.1 𝑥𝐹
icccncfext.2 𝐽 = (topGen‘ran (,))
icccncfext.3 𝑌 = 𝐾
icccncfext.4 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴[,]𝐵), (𝐹𝑥), if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
icccncfext.5 (𝜑𝐴 ∈ ℝ)
icccncfext.6 (𝜑𝐵 ∈ ℝ)
icccncfext.7 (𝜑𝐴𝐵)
icccncfext.8 (𝜑𝐾 ∈ Top)
icccncfext.9 (𝜑𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐾))
Assertion
Ref Expression
icccncfext (𝜑 → (𝐺 ∈ (𝐽 Cn (𝐾t ran 𝐹)) ∧ (𝐺 ↾ (𝐴[,]𝐵)) = 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝑌(𝑥)

Proof of Theorem icccncfext
Dummy variables 𝑡 𝑤 𝑦 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccncfext.2 . . . . . . . . . . . 12 𝐽 = (topGen‘ran (,))
2 retopon 23372 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
31, 2eqeltri 2909 . . . . . . . . . . 11 𝐽 ∈ (TopOn‘ℝ)
4 icccncfext.5 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
5 icccncfext.6 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 41829 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 resttopon 21769 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘ℝ) ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
83, 6, 7sylancr 589 . . . . . . . . . 10 (𝜑 → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
9 icccncfext.8 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Top)
10 icccncfext.3 . . . . . . . . . . . 12 𝑌 = 𝐾
119, 10jctir 523 . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ Top ∧ 𝑌 = 𝐾))
12 istopon 21520 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) ↔ (𝐾 ∈ Top ∧ 𝑌 = 𝐾))
1311, 12sylibr 236 . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
14 icccncfext.9 . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐾))
15 cnf2 21857 . . . . . . . . . 10 (((𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐾)) → 𝐹:(𝐴[,]𝐵)⟶𝑌)
168, 13, 14, 15syl3anc 1367 . . . . . . . . 9 (𝜑𝐹:(𝐴[,]𝐵)⟶𝑌)
1716ffnd 6515 . . . . . . . 8 (𝜑𝐹 Fn (𝐴[,]𝐵))
18 dffn3 6525 . . . . . . . 8 (𝐹 Fn (𝐴[,]𝐵) ↔ 𝐹:(𝐴[,]𝐵)⟶ran 𝐹)
1917, 18sylib 220 . . . . . . 7 (𝜑𝐹:(𝐴[,]𝐵)⟶ran 𝐹)
2019ffvelrnda 6851 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ ran 𝐹)
21 fnfun 6453 . . . . . . . . . 10 (𝐹 Fn (𝐴[,]𝐵) → Fun 𝐹)
2217, 21syl 17 . . . . . . . . 9 (𝜑 → Fun 𝐹)
234rexrd 10691 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
245rexrd 10691 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
25 icccncfext.7 . . . . . . . . . . 11 (𝜑𝐴𝐵)
26 lbicc2 12853 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2723, 24, 25, 26syl3anc 1367 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐴[,]𝐵))
28 fndm 6455 . . . . . . . . . . . 12 (𝐹 Fn (𝐴[,]𝐵) → dom 𝐹 = (𝐴[,]𝐵))
2917, 28syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (𝐴[,]𝐵))
3029eqcomd 2827 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = dom 𝐹)
3127, 30eleqtrd 2915 . . . . . . . . 9 (𝜑𝐴 ∈ dom 𝐹)
32 fvelrn 6844 . . . . . . . . 9 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
3322, 31, 32syl2anc 586 . . . . . . . 8 (𝜑 → (𝐹𝐴) ∈ ran 𝐹)
34 ubicc2 12854 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
3523, 24, 25, 34syl3anc 1367 . . . . . . . . . 10 (𝜑𝐵 ∈ (𝐴[,]𝐵))
3635, 30eleqtrd 2915 . . . . . . . . 9 (𝜑𝐵 ∈ dom 𝐹)
37 fvelrn 6844 . . . . . . . . 9 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ ran 𝐹)
3822, 36, 37syl2anc 586 . . . . . . . 8 (𝜑 → (𝐹𝐵) ∈ ran 𝐹)
3933, 38ifcld 4512 . . . . . . 7 (𝜑 → if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ ran 𝐹)
4039adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)) → if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ ran 𝐹)
4120, 40ifclda 4501 . . . . 5 (𝜑 → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ ran 𝐹)
4241adantr 483 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ ran 𝐹)
43 icccncfext.4 . . . . 5 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴[,]𝐵), (𝐹𝑥), if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
44 nfv 1915 . . . . . . 7 𝑦 𝑥 ∈ (𝐴[,]𝐵)
45 nfcv 2977 . . . . . . 7 𝑦(𝐹𝑥)
46 nfcv 2977 . . . . . . 7 𝑦if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵))
4744, 45, 46nfif 4496 . . . . . 6 𝑦if(𝑥 ∈ (𝐴[,]𝐵), (𝐹𝑥), if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
48 nfv 1915 . . . . . . 7 𝑥 𝑦 ∈ (𝐴[,]𝐵)
49 icccncfext.1 . . . . . . . 8 𝑥𝐹
50 nfcv 2977 . . . . . . . 8 𝑥𝑦
5149, 50nffv 6680 . . . . . . 7 𝑥(𝐹𝑦)
52 nfv 1915 . . . . . . . 8 𝑥 𝑦 < 𝐴
53 nfcv 2977 . . . . . . . . 9 𝑥𝐴
5449, 53nffv 6680 . . . . . . . 8 𝑥(𝐹𝐴)
55 nfcv 2977 . . . . . . . . 9 𝑥𝐵
5649, 55nffv 6680 . . . . . . . 8 𝑥(𝐹𝐵)
5752, 54, 56nfif 4496 . . . . . . 7 𝑥if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))
5848, 51, 57nfif 4496 . . . . . 6 𝑥if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
59 eleq1 2900 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑦 ∈ (𝐴[,]𝐵)))
60 fveq2 6670 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
61 breq1 5069 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 < 𝐴𝑦 < 𝐴))
6261ifbid 4489 . . . . . . 7 (𝑥 = 𝑦 → if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
6359, 60, 62ifbieq12d 4494 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 ∈ (𝐴[,]𝐵), (𝐹𝑥), if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
6447, 58, 63cbvmpt 5167 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴[,]𝐵), (𝐹𝑥), if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵)))) = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
6543, 64eqtri 2844 . . . 4 𝐺 = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
6642, 65fmptd 6878 . . 3 (𝜑𝐺:ℝ⟶ran 𝐹)
6766adantr 483 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 𝐺:ℝ⟶ran 𝐹)
68 simplll 773 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → 𝜑)
69 simplr 767 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → 𝑢 ∈ (𝐾t ran 𝐹))
7068, 69jca 514 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → (𝜑𝑢 ∈ (𝐾t ran 𝐹)))
71 ssidd 3990 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ ran 𝐹)
7216frnd 6521 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹𝑌)
73 cnrest2 21894 . . . . . . . . . . . . 13 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹𝑌) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐾) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐾t ran 𝐹))))
7413, 71, 72, 73syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐾) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐾t ran 𝐹))))
7514, 74mpbid 234 . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐾t ran 𝐹)))
7675anim1i 616 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝐾t ran 𝐹)) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐾t ran 𝐹)) ∧ 𝑢 ∈ (𝐾t ran 𝐹)))
77 cnima 21873 . . . . . . . . . 10 ((𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐾t ran 𝐹)) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) → (𝐹𝑢) ∈ (𝐽t (𝐴[,]𝐵)))
7870, 76, 773syl 18 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → (𝐹𝑢) ∈ (𝐽t (𝐴[,]𝐵)))
79 retop 23370 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
801, 79eqeltri 2909 . . . . . . . . . . . . 13 𝐽 ∈ Top
8180a1i 11 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
82 reex 10628 . . . . . . . . . . . . . 14 ℝ ∈ V
8382a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
8483, 6ssexd 5228 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ∈ V)
8581, 84jca 514 . . . . . . . . . . 11 (𝜑 → (𝐽 ∈ Top ∧ (𝐴[,]𝐵) ∈ V))
8668, 85syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → (𝐽 ∈ Top ∧ (𝐴[,]𝐵) ∈ V))
87 elrest 16701 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐹𝑢) ∈ (𝐽t (𝐴[,]𝐵)) ↔ ∃𝑤𝐽 (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))))
8886, 87syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → ((𝐹𝑢) ∈ (𝐽t (𝐴[,]𝐵)) ↔ ∃𝑤𝐽 (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))))
8978, 88mpbid 234 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → ∃𝑤𝐽 (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
90683ad2ant1 1129 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → 𝜑)
91 simpllr 774 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → 𝑦 ∈ ℝ)
92913ad2ant1 1129 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
93 simp1r 1194 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺𝑦) ∈ 𝑢)
9490, 92, 93jca31 517 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → ((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢))
95 simpll2 1209 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑤𝐽)
96 iooretop 23374 . . . . . . . . . . . . . . . . 17 (-∞(,)𝐴) ∈ (topGen‘ran (,))
9796, 1eleqtrri 2912 . . . . . . . . . . . . . . . 16 (-∞(,)𝐴) ∈ 𝐽
98 iooretop 23374 . . . . . . . . . . . . . . . . 17 (𝐵(,)+∞) ∈ (topGen‘ran (,))
9998, 1eleqtrri 2912 . . . . . . . . . . . . . . . 16 (𝐵(,)+∞) ∈ 𝐽
100 unopn 21511 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ (-∞(,)𝐴) ∈ 𝐽 ∧ (𝐵(,)+∞) ∈ 𝐽) → ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ 𝐽)
10180, 97, 99, 100mp3an 1457 . . . . . . . . . . . . . . 15 ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ 𝐽
102 unopn 21511 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑤𝐽 ∧ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ 𝐽) → (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∈ 𝐽)
10380, 101, 102mp3an13 1448 . . . . . . . . . . . . . 14 (𝑤𝐽 → (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∈ 𝐽)
10495, 103syl 17 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∈ 𝐽)
105 simpl1l 1220 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝜑𝑦 ∈ ℝ))
106105adantr 483 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝜑𝑦 ∈ ℝ))
107 simpl1r 1221 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺𝑦) ∈ 𝑢)
108107adantr 483 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺𝑦) ∈ 𝑢)
109 simpll3 1210 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
110 difreicc 12871 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
1114, 5, 110syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
112111eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) = (ℝ ∖ (𝐴[,]𝐵)))
113112eleq2d 2898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ 𝑦 ∈ (ℝ ∖ (𝐴[,]𝐵))))
114113notbid 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ ¬ 𝑦 ∈ (ℝ ∖ (𝐴[,]𝐵))))
115114biimpa 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ 𝑦 ∈ (ℝ ∖ (𝐴[,]𝐵)))
116 eldif 3946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (ℝ ∖ (𝐴[,]𝐵)) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)))
117115, 116sylnib 330 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)))
118 imnan 402 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ ℝ → ¬ ¬ 𝑦 ∈ (𝐴[,]𝐵)) ↔ ¬ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)))
119117, 118sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑦 ∈ ℝ → ¬ ¬ 𝑦 ∈ (𝐴[,]𝐵)))
120119imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∧ 𝑦 ∈ ℝ) → ¬ ¬ 𝑦 ∈ (𝐴[,]𝐵))
121120notnotrd 135 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ (𝐴[,]𝐵))
122121an32s 650 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦 ∈ (𝐴[,]𝐵))
123122adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦 ∈ (𝐴[,]𝐵))
124 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝜑)
1256sselda 3967 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
12616adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶𝑌)
127126ffvelrnda 6851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ 𝑌)
12816, 27ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝐹𝐴) ∈ 𝑌)
129128ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑦 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦 < 𝐴) → (𝐹𝐴) ∈ 𝑌)
13016, 35ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝐹𝐵) ∈ 𝑌)
131130ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑦 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑦 < 𝐴) → (𝐹𝐵) ∈ 𝑌)
132129, 131ifclda 4501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑦 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)) → if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ 𝑌)
133127, 132ifclda 4501 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑌)
13465fvmpt2 6779 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ ℝ ∧ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑌) → (𝐺𝑦) = if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
135125, 133, 134syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) = if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
136 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
137136iftrued 4475 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝑦))
138135, 137eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) = (𝐹𝑦))
139138eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) = (𝐺𝑦))
140124, 123, 139syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐹𝑦) = (𝐺𝑦))
141 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐺𝑦) ∈ 𝑢)
142140, 141eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐹𝑦) ∈ 𝑢)
143124, 17syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝐹 Fn (𝐴[,]𝐵))
144 elpreima 6828 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 Fn (𝐴[,]𝐵) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
145143, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
146123, 142, 145mpbir2and 711 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦 ∈ (𝐹𝑢))
147146adantlr 713 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦 ∈ (𝐹𝑢))
148 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
149147, 148eleqtrd 2915 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
150 elin 4169 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)) ↔ (𝑦𝑤𝑦 ∈ (𝐴[,]𝐵)))
151149, 150sylib 220 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑦𝑤𝑦 ∈ (𝐴[,]𝐵)))
152151simpld 497 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦𝑤)
153152ex 415 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → 𝑦𝑤))
154153orrd 859 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∨ 𝑦𝑤))
155154orcomd 867 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝑦𝑤𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
156 elun 4125 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ↔ (𝑦𝑤𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
157155, 156sylibr 236 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → 𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
158106, 108, 109, 157syl21anc 835 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
159 imaundi 6008 . . . . . . . . . . . . . 14 (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) = ((𝐺𝑤) ∪ (𝐺 “ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
160106simpld 497 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝜑)
161 toponss 21535 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘ℝ) ∧ 𝑤𝐽) → 𝑤 ⊆ ℝ)
1623, 95, 161sylancr 589 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑤 ⊆ ℝ)
163160, 162, 109jca31 517 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))))
164 simplr 767 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝐴) ∈ 𝑢)
165 simpr 487 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝐵) ∈ 𝑢)
16643funmpt2 6394 . . . . . . . . . . . . . . . . . . . . . . 23 Fun 𝐺
167166a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → Fun 𝐺)
168167ad5antr 732 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) → Fun 𝐺)
169 fvelima 6731 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐺𝑦 ∈ (𝐺𝑤)) → ∃𝑧𝑤 (𝐺𝑧) = 𝑦)
170168, 169sylancom 590 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) → ∃𝑧𝑤 (𝐺𝑧) = 𝑦)
171 eqcom 2828 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺𝑧) = 𝑦𝑦 = (𝐺𝑧))
172171biimpi 218 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺𝑧) = 𝑦𝑦 = (𝐺𝑧))
1731723ad2ant3 1131 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → 𝑦 = (𝐺𝑧))
174 simp1ll 1232 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → (((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢))
175 simp1lr 1233 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → (𝐹𝐵) ∈ 𝑢)
176 simp2 1133 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → 𝑧𝑤)
177 simp-5l 783 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝜑𝑤 ⊆ ℝ))
178 simp-5r 784 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
179 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝑤)
180177, 178, 179jca31 517 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤))
181 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝑧 → (𝑦 ∈ (𝐴[,]𝐵) ↔ 𝑧 ∈ (𝐴[,]𝐵)))
182181anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = 𝑧 → ((𝜑𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑𝑧 ∈ (𝐴[,]𝐵))))
183 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
184 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
185183, 184eqeq12d 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = 𝑧 → ((𝐺𝑦) = (𝐹𝑦) ↔ (𝐺𝑧) = (𝐹𝑧)))
186182, 185imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = 𝑧 → (((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) = (𝐹𝑦)) ↔ ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = (𝐹𝑧))))
187186, 138chvarvv 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = (𝐹𝑧))
188187ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = (𝐹𝑧))
189188adantl3r 748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = (𝐹𝑧))
190 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝜑)
191 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑤 ⊆ ℝ)
192 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝑤)
193 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
194192, 193elind 4171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
195 eqcom 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ↔ (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
196195biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) → (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
197196ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
198194, 197eleqtrd 2915 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐹𝑢))
199198adantl3r 748 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐹𝑢))
200 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑤 ⊆ ℝ) ∧ 𝑧 ∈ (𝐹𝑢)) → 𝑧 ∈ (𝐹𝑢))
20117ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑤 ⊆ ℝ) ∧ 𝑧 ∈ (𝐹𝑢)) → 𝐹 Fn (𝐴[,]𝐵))
202 elpreima 6828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹 Fn (𝐴[,]𝐵) → (𝑧 ∈ (𝐹𝑢) ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) ∈ 𝑢)))
203201, 202syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑤 ⊆ ℝ) ∧ 𝑧 ∈ (𝐹𝑢)) → (𝑧 ∈ (𝐹𝑢) ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) ∈ 𝑢)))
204200, 203mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑤 ⊆ ℝ) ∧ 𝑧 ∈ (𝐹𝑢)) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) ∈ 𝑢))
205204simprd 498 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑤 ⊆ ℝ) ∧ 𝑧 ∈ (𝐹𝑢)) → (𝐹𝑧) ∈ 𝑢)
206190, 191, 199, 205syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ 𝑢)
207189, 206eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ 𝑢)
208180, 207sylancom 590 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ 𝑢)
209 simp-5l 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝜑)
210 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) ∈ 𝑢)
211209, 210jca 514 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝜑 ∧ (𝐹𝐴) ∈ 𝑢))
212 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝐵) ∈ 𝑢)
213 simp-5r 784 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑤 ⊆ ℝ)
214 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝑤)
215213, 214sseldd 3968 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ ℝ)
216211, 212, 215jca31 517 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ))
21765a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝐺 = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))))
218 breq1 5069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = 𝑧 → (𝑦 < 𝐴𝑧 < 𝐴))
219218ifbid 4489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝑧 → if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
220181, 184, 219ifbieq12d 4494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = 𝑧 → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
221220adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑦 = 𝑧) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
222 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ ℝ)
223 iffalse 4476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑧 ∈ (𝐴[,]𝐵) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
224223adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
225 simp-5r 784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑧 < 𝐴) → (𝐹𝐴) ∈ 𝑢)
226 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑧 < 𝐴) → (𝐹𝐵) ∈ 𝑢)
227225, 226ifclda 4501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ 𝑢)
228224, 227eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑢)
229217, 221, 222, 228fvmptd 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
230229, 224eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
231230, 227eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ 𝑢)
232216, 231sylancom 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ 𝑢)
233232adantl4r 753 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ 𝑢)
234208, 233pm2.61dan 811 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) → (𝐺𝑧) ∈ 𝑢)
235174, 175, 176, 234syl21anc 835 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → (𝐺𝑧) ∈ 𝑢)
236173, 235eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → 𝑦𝑢)
237236rexlimdv3a 3286 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) → (∃𝑧𝑤 (𝐺𝑧) = 𝑦𝑦𝑢))
238170, 237mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) → 𝑦𝑢)
239238ex 415 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝐺𝑤) → 𝑦𝑢))
240239alrimiv 1928 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ∀𝑦(𝑦 ∈ (𝐺𝑤) → 𝑦𝑢))
241163, 164, 165, 240syl21anc 835 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ∀𝑦(𝑦 ∈ (𝐺𝑤) → 𝑦𝑢))
242 dfss2 3955 . . . . . . . . . . . . . . . 16 ((𝐺𝑤) ⊆ 𝑢 ↔ ∀𝑦(𝑦 ∈ (𝐺𝑤) → 𝑦𝑢))
243241, 242sylibr 236 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺𝑤) ⊆ 𝑢)
244 imaundi 6008 . . . . . . . . . . . . . . . . 17 (𝐺 “ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) = ((𝐺 “ (-∞(,)𝐴)) ∪ (𝐺 “ (𝐵(,)+∞)))
245166a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → Fun 𝐺)
246 fvelima 6731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐺𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → ∃𝑧 ∈ (-∞(,)𝐴)(𝐺𝑧) = 𝑡)
247245, 246sylancom 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → ∃𝑧 ∈ (-∞(,)𝐴)(𝐺𝑧) = 𝑡)
248 simp1l 1193 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) ∧ 𝑧 ∈ (-∞(,)𝐴) ∧ (𝐺𝑧) = 𝑡) → 𝜑)
249 simp2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) ∧ 𝑧 ∈ (-∞(,)𝐴) ∧ (𝐺𝑧) = 𝑡) → 𝑧 ∈ (-∞(,)𝐴))
250 simp3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) ∧ 𝑧 ∈ (-∞(,)𝐴) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = 𝑡)
25165a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → 𝐺 = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))))
252220adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (-∞(,)𝐴)) ∧ 𝑦 = 𝑧) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
253 elioore 12769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (-∞(,)𝐴) → 𝑧 ∈ ℝ)
254253adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ ℝ)
255 elioo3g 12768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑧 ∈ (-∞(,)𝐴) ↔ ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐴)))
256255biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑧 ∈ (-∞(,)𝐴) → ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐴)))
257256simprrd 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 ∈ (-∞(,)𝐴) → 𝑧 < 𝐴)
258257adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → 𝑧 < 𝐴)
259 ltnle 10720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑧 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑧 < 𝐴 ↔ ¬ 𝐴𝑧))
260253, 4, 259syl2anr 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝑧 < 𝐴 ↔ ¬ 𝐴𝑧))
261258, 260mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → ¬ 𝐴𝑧)
262261intn3an2d 1476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → ¬ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
2634, 5jca 514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
264263adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
265 elicc2 12802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
266264, 265syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
267262, 266mtbird 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → ¬ 𝑧 ∈ (𝐴[,]𝐵))
268267iffalsed 4478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
269257iftrued 4475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (-∞(,)𝐴) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = (𝐹𝐴))
270269adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = (𝐹𝐴))
271268, 270eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝐴))
272128adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝐹𝐴) ∈ 𝑌)
273271, 272eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑌)
274251, 252, 254, 273fvmptd 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
275274adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (-∞(,)𝐴)) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
276 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (-∞(,)𝐴)) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = 𝑡)
277271adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (-∞(,)𝐴)) ∧ (𝐺𝑧) = 𝑡) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝐴))
278275, 276, 2773eqtr3d 2864 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧 ∈ (-∞(,)𝐴)) ∧ (𝐺𝑧) = 𝑡) → 𝑡 = (𝐹𝐴))
279248, 249, 250, 278syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) ∧ 𝑧 ∈ (-∞(,)𝐴) ∧ (𝐺𝑧) = 𝑡) → 𝑡 = (𝐹𝐴))
280279rexlimdv3a 3286 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → (∃𝑧 ∈ (-∞(,)𝐴)(𝐺𝑧) = 𝑡𝑡 = (𝐹𝐴)))
281247, 280mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → 𝑡 = (𝐹𝐴))
282 velsn 4583 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ {(𝐹𝐴)} ↔ 𝑡 = (𝐹𝐴))
283281, 282sylibr 236 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → 𝑡 ∈ {(𝐹𝐴)})
284283ex 415 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑡 ∈ (𝐺 “ (-∞(,)𝐴)) → 𝑡 ∈ {(𝐹𝐴)}))
285284ssrdv 3973 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐺 “ (-∞(,)𝐴)) ⊆ {(𝐹𝐴)})
286285adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ (-∞(,)𝐴)) ⊆ {(𝐹𝐴)})
287 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) → (𝐹𝐴) ∈ 𝑢)
288287snssd 4742 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) → {(𝐹𝐴)} ⊆ 𝑢)
289286, 288sstrd 3977 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ (-∞(,)𝐴)) ⊆ 𝑢)
290289adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (-∞(,)𝐴)) ⊆ 𝑢)
291 fvelima 6731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐺𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) → ∃𝑧 ∈ (𝐵(,)+∞)(𝐺𝑧) = 𝑡)
292167, 291sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) → ∃𝑧 ∈ (𝐵(,)+∞)(𝐺𝑧) = 𝑡)
293 simp1l 1193 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) ∧ 𝑧 ∈ (𝐵(,)+∞) ∧ (𝐺𝑧) = 𝑡) → 𝜑)
294 simp2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) ∧ 𝑧 ∈ (𝐵(,)+∞) ∧ (𝐺𝑧) = 𝑡) → 𝑧 ∈ (𝐵(,)+∞))
295 simp3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) ∧ 𝑧 ∈ (𝐵(,)+∞) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = 𝑡)
29665a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐺 = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))))
297220adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ 𝑦 = 𝑧) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
298 elioore 12769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (𝐵(,)+∞) → 𝑧 ∈ ℝ)
299298adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝑧 ∈ ℝ)
30016ffvelrnda 6851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ 𝑌)
301300adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ 𝑌)
3024adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐴 ∈ ℝ)
3035adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐵 ∈ ℝ)
30425adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐴𝐵)
305 elioo3g 12768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑧 ∈ (𝐵(,)+∞) ↔ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑧 ∈ ℝ*) ∧ (𝐵 < 𝑧𝑧 < +∞)))
306305biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑧 ∈ (𝐵(,)+∞) → ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑧 ∈ ℝ*) ∧ (𝐵 < 𝑧𝑧 < +∞)))
307306simprld 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 ∈ (𝐵(,)+∞) → 𝐵 < 𝑧)
308307adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐵 < 𝑧)
309302, 303, 299, 304, 308lelttrd 10798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐴 < 𝑧)
310302, 299, 309ltnsymd 10789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → ¬ 𝑧 < 𝐴)
311310iffalsed 4478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = (𝐹𝐵))
312130adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → (𝐹𝐵) ∈ 𝑌)
313311, 312eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ 𝑌)
314313adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ 𝑌)
315301, 314ifclda 4501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑌)
316296, 297, 299, 315fvmptd 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → (𝐺𝑧) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
317316adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
318 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = 𝑡)
319303, 299ltnled 10787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → (𝐵 < 𝑧 ↔ ¬ 𝑧𝐵))
320308, 319mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → ¬ 𝑧𝐵)
321320intn3an3d 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → ¬ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
322263adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
323322, 265syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
324321, 323mtbird 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → ¬ 𝑧 ∈ (𝐴[,]𝐵))
325324iffalsed 4478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
326325, 311eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝐵))
327326adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ (𝐺𝑧) = 𝑡) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝐵))
328317, 318, 3273eqtr3d 2864 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ (𝐺𝑧) = 𝑡) → 𝑡 = (𝐹𝐵))
329293, 294, 295, 328syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) ∧ 𝑧 ∈ (𝐵(,)+∞) ∧ (𝐺𝑧) = 𝑡) → 𝑡 = (𝐹𝐵))
330329rexlimdv3a 3286 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) → (∃𝑧 ∈ (𝐵(,)+∞)(𝐺𝑧) = 𝑡𝑡 = (𝐹𝐵)))
331292, 330mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) → 𝑡 = (𝐹𝐵))
332 velsn 4583 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ {(𝐹𝐵)} ↔ 𝑡 = (𝐹𝐵))
333331, 332sylibr 236 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) → 𝑡 ∈ {(𝐹𝐵)})
334333ex 415 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑡 ∈ (𝐺 “ (𝐵(,)+∞)) → 𝑡 ∈ {(𝐹𝐵)}))
335334ssrdv 3973 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐺 “ (𝐵(,)+∞)) ⊆ {(𝐹𝐵)})
336335adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝐵(,)+∞)) ⊆ {(𝐹𝐵)})
337 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝐵) ∈ 𝑢)
338337snssd 4742 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) → {(𝐹𝐵)} ⊆ 𝑢)
339336, 338sstrd 3977 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝐵(,)+∞)) ⊆ 𝑢)
340339adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝐵(,)+∞)) ⊆ 𝑢)
341290, 340unssd 4162 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝐺 “ (-∞(,)𝐴)) ∪ (𝐺 “ (𝐵(,)+∞))) ⊆ 𝑢)
342244, 341eqsstrid 4015 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ 𝑢)
343160, 164, 165, 342syl21anc 835 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ 𝑢)
344243, 343unssd 4162 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝐺𝑤) ∪ (𝐺 “ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) ⊆ 𝑢)
345159, 344eqsstrid 4015 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) ⊆ 𝑢)
346 eleq2 2901 . . . . . . . . . . . . . . 15 (𝑣 = (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑦𝑣𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))))
347 imaeq2 5925 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐺𝑣) = (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))))
348347sseq1d 3998 . . . . . . . . . . . . . . 15 (𝑣 = (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ((𝐺𝑣) ⊆ 𝑢 ↔ (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) ⊆ 𝑢))
349346, 348anbi12d 632 . . . . . . . . . . . . . 14 (𝑣 = (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ((𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) ↔ (𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∧ (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) ⊆ 𝑢)))
350349rspcev 3623 . . . . . . . . . . . . 13 (((𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∈ 𝐽 ∧ (𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∧ (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
351104, 158, 345, 350syl12anc 834 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
35280a1i 11 . . . . . . . . . . . . . . . 16 (𝑤𝐽𝐽 ∈ Top)
353 iooretop 23374 . . . . . . . . . . . . . . . . . 18 (-∞(,)𝐵) ∈ (topGen‘ran (,))
354353, 1eleqtrri 2912 . . . . . . . . . . . . . . . . 17 (-∞(,)𝐵) ∈ 𝐽
355 inopn 21507 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤𝐽 ∧ (-∞(,)𝐵) ∈ 𝐽) → (𝑤 ∩ (-∞(,)𝐵)) ∈ 𝐽)
35680, 354, 355mp3an13 1448 . . . . . . . . . . . . . . . 16 (𝑤𝐽 → (𝑤 ∩ (-∞(,)𝐵)) ∈ 𝐽)
35797a1i 11 . . . . . . . . . . . . . . . 16 (𝑤𝐽 → (-∞(,)𝐴) ∈ 𝐽)
358 unopn 21511 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ (𝑤 ∩ (-∞(,)𝐵)) ∈ 𝐽 ∧ (-∞(,)𝐴) ∈ 𝐽) → ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∈ 𝐽)
359352, 356, 357, 358syl3anc 1367 . . . . . . . . . . . . . . 15 (𝑤𝐽 → ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∈ 𝐽)
3603593ad2ant2 1130 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∈ 𝐽)
361360ad2antrr 724 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∈ 𝐽)
362 simpll1 1208 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢))
363 simpll3 1210 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
364 simpr 487 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ (𝐹𝐵) ∈ 𝑢)
365 simpll 765 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → (((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))))
366263ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
367 eqimss 4023 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
368110, 367syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
369 difcom 4434 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℝ ∖ (𝐴[,]𝐵)) ⊆ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ (ℝ ∖ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ (𝐴[,]𝐵))
370368, 369sylib 220 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ (𝐴[,]𝐵))
371366, 370syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (ℝ ∖ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ (𝐴[,]𝐵))
372371adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → (ℝ ∖ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ (𝐴[,]𝐵))
373 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ ℝ)
374 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → ¬ 𝑦 ∈ (-∞(,)𝐴))
375 elioore 12769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (𝐵(,)+∞) → 𝑦 ∈ ℝ)
376375adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ ℝ)
377 elioo3g 12768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑦 ∈ (𝐵(,)+∞) ↔ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
378377biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑦 ∈ (𝐵(,)+∞) → ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
379378simprld 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 ∈ (𝐵(,)+∞) → 𝐵 < 𝑦)
380379adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝐵 < 𝑦)
3815adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝐵 ∈ ℝ)
382381, 376ltnled 10787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐵 < 𝑦 ↔ ¬ 𝑦𝐵))
383380, 382mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → ¬ 𝑦𝐵)
384383intn3an3d 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → ¬ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
385263adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
386 elicc2 12802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
387385, 386syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
388384, 387mtbird 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → ¬ 𝑦 ∈ (𝐴[,]𝐵))
389388iffalsed 4478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
3904adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝐴 ∈ ℝ)
39125adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝐴𝐵)
392390, 381, 376, 391, 380lelttrd 10798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝐴 < 𝑦)
393390, 376, 392ltnsymd 10789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → ¬ 𝑦 < 𝐴)
394393iffalsed 4478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = (𝐹𝐵))
395389, 394eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝐵))
396130adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝐵) ∈ 𝑌)
397395, 396eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑌)
398376, 397, 134syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐺𝑦) = if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
399398, 395eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐺𝑦) = (𝐹𝐵))
400399eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝐵) = (𝐺𝑦))
401400adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝐵) = (𝐺𝑦))
402 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐵(,)+∞)) → (𝐺𝑦) ∈ 𝑢)
403401, 402eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝐵) ∈ 𝑢)
404403adantllr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝐵) ∈ 𝑢)
405404stoic1a 1773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ 𝑦 ∈ (𝐵(,)+∞))
406405adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → ¬ 𝑦 ∈ (𝐵(,)+∞))
407 ioran 980 . . . . . . . . . . . . . . . . . . . . . . . . 25 (¬ (𝑦 ∈ (-∞(,)𝐴) ∨ 𝑦 ∈ (𝐵(,)+∞)) ↔ (¬ 𝑦 ∈ (-∞(,)𝐴) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)))
408374, 406, 407sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → ¬ (𝑦 ∈ (-∞(,)𝐴) ∨ 𝑦 ∈ (𝐵(,)+∞)))
409 elun 4125 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ (𝑦 ∈ (-∞(,)𝐴) ∨ 𝑦 ∈ (𝐵(,)+∞)))
410408, 409sylnibr 331 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
411373, 410eldifd 3947 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ (ℝ ∖ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
412372, 411sseldd 3968 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ (𝐴[,]𝐵))
413412adantllr 717 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ (𝐴[,]𝐵))
414 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝜑)
415 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) ∈ 𝑢)
416 simpr 487 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
417 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
418139adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) = (𝐺𝑦))
419 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) ∈ 𝑢)
420418, 419eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ 𝑢)
42117ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐹 Fn (𝐴[,]𝐵))
422421, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
423417, 420, 422mpbir2and 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐹𝑢))
424414, 415, 416, 423syl21anc 835 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐹𝑢))
425 simplr 767 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
426424, 425eleqtrd 2915 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
427 elinel1 4172 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)) → 𝑦𝑤)
428426, 427syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝑤)
429365, 413, 428syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦𝑤)
430 simp-4l 781 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → (𝜑𝑦 ∈ ℝ))
431 simp-4r 782 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → (𝐺𝑦) ∈ 𝑢)
432 simplr 767 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → ¬ (𝐹𝐵) ∈ 𝑢)
433 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 = 𝐵) → 𝜑)
434 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 = 𝐵) → 𝑦 = 𝐵)
43535adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
436434, 435eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 = 𝐵) → 𝑦 ∈ (𝐴[,]𝐵))
437433, 436, 138syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 = 𝐵) → (𝐺𝑦) = (𝐹𝑦))
438434fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 = 𝐵) → (𝐹𝑦) = (𝐹𝐵))
439437, 438eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 = 𝐵) → (𝐺𝑦) = (𝐹𝐵))
440439ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ 𝑦 = 𝐵) → (𝐺𝑦) = (𝐹𝐵))
441 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → 𝜑)
44224adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ ℝ) → 𝐵 ∈ ℝ*)
443 pnfxr 10695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 +∞ ∈ ℝ*
444443a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ ℝ) → +∞ ∈ ℝ*)
445 rexr 10687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
446445adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
447442, 444, 4463jca 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ ℝ) → (𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*))
448447ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*))
449 mnflt 12519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ ℝ → -∞ < 𝑦)
450449ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → -∞ < 𝑦)
451 mnfxr 10698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 -∞ ∈ ℝ*
452451a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑦 ∈ ℝ) → -∞ ∈ ℝ*)
453452, 442, 4463jca 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑦 ∈ ℝ) → (-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*))
454 elioo3g 12768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 ∈ (-∞(,)𝐵) ↔ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐵)))
455454notbii 322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 𝑦 ∈ (-∞(,)𝐵) ↔ ¬ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐵)))
456455biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 𝑦 ∈ (-∞(,)𝐵) → ¬ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐵)))
457456adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → ¬ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐵)))
458 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → ¬ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐵))) ↔ ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ (-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*)) → ¬ (-∞ < 𝑦𝑦 < 𝐵)))
459457, 458mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ (-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*)) → ¬ (-∞ < 𝑦𝑦 < 𝐵))
460453, 459mpidan 687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → ¬ (-∞ < 𝑦𝑦 < 𝐵))
461 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → ¬ (-∞ < 𝑦𝑦 < 𝐵)) ↔ ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ -∞ < 𝑦) → ¬ 𝑦 < 𝐵))
462460, 461mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ -∞ < 𝑦) → ¬ 𝑦 < 𝐵)
463450, 462mpdan 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → ¬ 𝑦 < 𝐵)
464463anim1i 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (¬ 𝑦 < 𝐵 ∧ ¬ 𝑦 = 𝐵))
465 pm4.56 985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((¬ 𝑦 < 𝐵 ∧ ¬ 𝑦 = 𝐵) ↔ ¬ (𝑦 < 𝐵𝑦 = 𝐵))
466464, 465sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → ¬ (𝑦 < 𝐵𝑦 = 𝐵))
467 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
4685adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑦 ∈ ℝ) → 𝐵 ∈ ℝ)
469467, 468jca 514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑦 ∈ ℝ) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ))
470469ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ))
471 leloe 10727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦𝐵 ↔ (𝑦 < 𝐵𝑦 = 𝐵)))
472470, 471syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝑦𝐵 ↔ (𝑦 < 𝐵𝑦 = 𝐵)))
473466, 472mtbird 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → ¬ 𝑦𝐵)
4745anim1i 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑦 ∈ ℝ) → (𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ))
475474ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ))
476 ltnle 10720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐵 < 𝑦 ↔ ¬ 𝑦𝐵))
477475, 476syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝐵 < 𝑦 ↔ ¬ 𝑦𝐵))
478473, 477mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → 𝐵 < 𝑦)
479 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → 𝑦 ∈ ℝ)
480479ltpnfd 12517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → 𝑦 < +∞)
481478, 480jca 514 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝐵 < 𝑦𝑦 < +∞))
482448, 481, 377sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → 𝑦 ∈ (𝐵(,)+∞))
483441, 482, 399syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝐺𝑦) = (𝐹𝐵))
484440, 483pm2.61dan 811 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → (𝐺𝑦) = (𝐹𝐵))
485484eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → (𝐹𝐵) = (𝐺𝑦))
486485adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → (𝐹𝐵) = (𝐺𝑦))
487 simplr 767 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → (𝐺𝑦) ∈ 𝑢)
488486, 487eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → (𝐹𝐵) ∈ 𝑢)
489488stoic1a 1773 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ ¬ 𝑦 ∈ (-∞(,)𝐵))
490489notnotrd 135 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (-∞(,)𝐵))
491430, 431, 432, 490syl21anc 835 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ (-∞(,)𝐵))
492429, 491elind 4171 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ (𝑤 ∩ (-∞(,)𝐵)))
493492ex 415 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (¬ 𝑦 ∈ (-∞(,)𝐴) → 𝑦 ∈ (𝑤 ∩ (-∞(,)𝐵))))
494493orrd 859 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (-∞(,)𝐴) ∨ 𝑦 ∈ (𝑤 ∩ (-∞(,)𝐵))))
495494orcomd 867 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∨ 𝑦 ∈ (-∞(,)𝐴)))
496 elun 4125 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ↔ (𝑦 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∨ 𝑦 ∈ (-∞(,)𝐴)))
497495, 496sylibr 236 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)))
498362, 363, 364, 497syl21anc 835 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)))
499105simpld 497 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → 𝜑)
500499adantr 483 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝜑)
501 simpll2 1209 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑤𝐽)
5023, 501, 161sylancr 589 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑤 ⊆ ℝ)
503500, 502jca 514 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝜑𝑤 ⊆ ℝ))
504 simplr 767 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐹𝐴) ∈ 𝑢)
50566ffnd 6515 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 Fn ℝ)
506505ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → 𝐺 Fn ℝ)
507 ssinss1 4214 . . . . . . . . . . . . . . . . 17 (𝑤 ⊆ ℝ → (𝑤 ∩ (-∞(,)𝐵)) ⊆ ℝ)
508507ad3antlr 729 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝑤 ∩ (-∞(,)𝐵)) ⊆ ℝ)
509 ioossre 12799 . . . . . . . . . . . . . . . . 17 (-∞(,)𝐴) ⊆ ℝ
510509a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (-∞(,)𝐴) ⊆ ℝ)
511 unima 6739 . . . . . . . . . . . . . . . 16 ((𝐺 Fn ℝ ∧ (𝑤 ∩ (-∞(,)𝐵)) ⊆ ℝ ∧ (-∞(,)𝐴) ⊆ ℝ) → (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) = ((𝐺 “ (𝑤 ∩ (-∞(,)𝐵))) ∪ (𝐺 “ (-∞(,)𝐴))))
512506, 508, 510, 511syl3anc 1367 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) = ((𝐺 “ (𝑤 ∩ (-∞(,)𝐵))) ∪ (𝐺 “ (-∞(,)𝐴))))
513166a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) → Fun 𝐺)
514 fvelima 6731 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐺𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) → ∃𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))(𝐺𝑧) = 𝑦)
515513, 514sylancom 590 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) → ∃𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))(𝐺𝑧) = 𝑦)
5161723ad2ant3 1131 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ (𝐺𝑧) = 𝑦) → 𝑦 = (𝐺𝑧))
517 simp-5l 783 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ 𝑧 ∈ (-∞(,)𝐴)) → 𝜑)
518 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ 𝑧 ∈ (-∞(,)𝐴)) → (𝐹𝐴) ∈ 𝑢)
519 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (-∞(,)𝐴))
520274, 268, 2703eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) = (𝐹𝐴))
5215203adant2 1127 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) = (𝐹𝐴))
522 simp2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢𝑧 ∈ (-∞(,)𝐴)) → (𝐹𝐴) ∈ 𝑢)
523521, 522eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) ∈ 𝑢)
524517, 518, 519, 523syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ 𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) ∈ 𝑢)
525 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))))
526 simp-5l 783 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝜑)
527 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)))
528 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ 𝑧 ∈ (-∞(,)𝐴))
529 elinel1 4172 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) → 𝑧𝑤)
5305293ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧𝑤)
531 elinel2 4173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) → 𝑧 ∈ (-∞(,)𝐵))
532 elioore 12769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∈ (-∞(,)𝐵) → 𝑧 ∈ ℝ)
533531, 532syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) → 𝑧 ∈ ℝ)
5345333ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ ℝ)
535233ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝐴 ∈ ℝ*)
536534rexrd 10691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ ℝ*)
537 mnflt 12519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ ℝ → -∞ < 𝑧)
538534, 537syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → -∞ < 𝑧)
539451a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → -∞ ∈ ℝ*)
540539, 535, 5363jca 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*))
541 simp3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ 𝑧 ∈ (-∞(,)𝐴))
542541, 255sylnib 330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐴)))
543 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐴))) ↔ (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) ∧ (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*)) → ¬ (-∞ < 𝑧𝑧 < 𝐴)))
544542, 543mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) ∧ (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*)) → ¬ (-∞ < 𝑧𝑧 < 𝐴))
545540, 544mpdan 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ (-∞ < 𝑧𝑧 < 𝐴))
546 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ (-∞ < 𝑧𝑧 < 𝐴)) ↔ (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) ∧ -∞ < 𝑧) → ¬ 𝑧 < 𝐴))
547545, 546mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) ∧ -∞ < 𝑧) → ¬ 𝑧 < 𝐴)
548538, 547mpdan 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ 𝑧 < 𝐴)
549535, 536, 548xrnltled 10709 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝐴𝑧)
550 simp1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝜑)
5515313ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (-∞(,)𝐵))
552532adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐵)) → 𝑧 ∈ ℝ)
5535adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐵)) → 𝐵 ∈ ℝ)
554 elioo3g 12768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (-∞(,)𝐵) ↔ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐵)))
555554biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ (-∞(,)𝐵) → ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐵)))
556555simprrd 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (-∞(,)𝐵) → 𝑧 < 𝐵)
557556adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐵)) → 𝑧 < 𝐵)
558552, 553, 557ltled 10788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (-∞(,)𝐵)) → 𝑧𝐵)
559550, 551, 558syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧𝐵)
5602633ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
561560, 265syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
562534, 549, 559, 561mpbir3and 1338 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (𝐴[,]𝐵))
563530, 562elind 4171 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
564526, 527, 528, 563syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
565 elinel2 4173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
566565anim2i 618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝜑𝑧 ∈ (𝐴[,]𝐵)))
567566adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝜑𝑧 ∈ (𝐴[,]𝐵)))
568567, 187syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺𝑧) = (𝐹𝑧))
56917ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → 𝐹 Fn (𝐴[,]𝐵))
570 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
571196adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
572570, 571eleqtrd 2915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → 𝑧 ∈ (𝐹𝑢))
573572adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → 𝑧 ∈ (𝐹𝑢))
574202simplbda 502 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐹𝑢)) → (𝐹𝑧) ∈ 𝑢)
575569, 573, 574syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝐹𝑧) ∈ 𝑢)
576568, 575eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺𝑧) ∈ 𝑢)
577576adantllr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺𝑧) ∈ 𝑢)
578525, 564, 577syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) ∈ 𝑢)
579524, 578pm2.61dan 811 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) → (𝐺𝑧) ∈ 𝑢)
5805793adant3 1128 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ (𝐺𝑧) = 𝑦) → (𝐺𝑧) ∈ 𝑢)
581516, 580eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ (𝐺𝑧) = 𝑦) → 𝑦𝑢)
5825813adant1r 1173 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ (𝐺𝑧) = 𝑦) → 𝑦𝑢)
583582rexlimdv3a 3286 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) → (∃𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))(𝐺𝑧) = 𝑦𝑦𝑢))
584515, 583mpd 15 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) → 𝑦𝑢)
585584ex 415 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵))) → 𝑦𝑢))
586585ssrdv 3973 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ (𝑤 ∩ (-∞(,)𝐵))) ⊆ 𝑢)
587289ad4ant14 750 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ (-∞(,)𝐴)) ⊆ 𝑢)
588586, 587unssd 4162 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → ((𝐺 “ (𝑤 ∩ (-∞(,)𝐵))) ∪ (𝐺 “ (-∞(,)𝐴))) ⊆ 𝑢)
589512, 588eqsstrd 4005 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) ⊆ 𝑢)
590503, 363, 504, 589syl21anc 835 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) ⊆ 𝑢)
591 eleq2 2901 . . . . . . . . . . . . . . 15 (𝑣 = ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) → (𝑦𝑣𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))))
592 imaeq2 5925 . . . . . . . . . . . . . . . 16 (𝑣 = ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) → (𝐺𝑣) = (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))))
593592sseq1d 3998 . . . . . . . . . . . . . . 15 (𝑣 = ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) → ((𝐺𝑣) ⊆ 𝑢 ↔ (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) ⊆ 𝑢))
594591, 593anbi12d 632 . . . . . . . . . . . . . 14 (𝑣 = ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) → ((𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) ↔ (𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∧ (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) ⊆ 𝑢)))
595594rspcev 3623 . . . . . . . . . . . . 13 ((((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∈ 𝐽 ∧ (𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∧ (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
596361, 498, 590, 595syl12anc 834 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
597351, 596pm2.61dan 811 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
598 simpll2 1209 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑤𝐽)
599 iooretop 23374 . . . . . . . . . . . . . . . . 17 (𝐴(,)+∞) ∈ (topGen‘ran (,))
600599, 1eleqtrri 2912 . . . . . . . . . . . . . . . 16 (𝐴(,)+∞) ∈ 𝐽
601 inopn 21507 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝑤𝐽 ∧ (𝐴(,)+∞) ∈ 𝐽) → (𝑤 ∩ (𝐴(,)+∞)) ∈ 𝐽)
60280, 600, 601mp3an13 1448 . . . . . . . . . . . . . . 15 (𝑤𝐽 → (𝑤 ∩ (𝐴(,)+∞)) ∈ 𝐽)
60399a1i 11 . . . . . . . . . . . . . . 15 (𝑤𝐽 → (𝐵(,)+∞) ∈ 𝐽)
604 unopn 21511 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (𝑤 ∩ (𝐴(,)+∞)) ∈ 𝐽 ∧ (𝐵(,)+∞) ∈ 𝐽) → ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∈ 𝐽)
605352, 602, 603, 604syl3anc 1367 . . . . . . . . . . . . . 14 (𝑤𝐽 → ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∈ 𝐽)
606598, 605syl 17 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∈ 𝐽)
607 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢))
608607simpld 497 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝜑𝑦 ∈ ℝ))
609608simpld 497 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝜑)
610 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝐺𝑦) ∈ 𝑢)
611 simp-5r 784 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ ℝ)
612 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ¬ (𝐹𝐴) ∈ 𝑢)
613 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → 𝜑)
61423adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℝ*)
615452, 614, 4463jca 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑦 ∈ ℝ) → (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑦 ∈ ℝ*))
616615adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑦 ∈ ℝ*))
617449anim1i 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∈ ℝ ∧ 𝑦 < 𝐴) → (-∞ < 𝑦𝑦 < 𝐴))
618617adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → (-∞ < 𝑦𝑦 < 𝐴))
619 elioo3g 12768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (-∞(,)𝐴) ↔ ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐴)))
620616, 618, 619sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → 𝑦 ∈ (-∞(,)𝐴))
621 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = 𝑦 → (𝑧 ∈ (-∞(,)𝐴) ↔ 𝑦 ∈ (-∞(,)𝐴)))
622621anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑦 → ((𝜑𝑧 ∈ (-∞(,)𝐴)) ↔ (𝜑𝑦 ∈ (-∞(,)𝐴))))
623 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
624623eqeq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑦 → ((𝐺𝑧) = (𝐹𝐴) ↔ (𝐺𝑦) = (𝐹𝐴)))
625622, 624imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑦 → (((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) = (𝐹𝐴)) ↔ ((𝜑𝑦 ∈ (-∞(,)𝐴)) → (𝐺𝑦) = (𝐹𝐴))))
626625, 520chvarvv 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (-∞(,)𝐴)) → (𝐺𝑦) = (𝐹𝐴))
627613, 620, 626syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → (𝐺𝑦) = (𝐹𝐴))
628627eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → (𝐹𝐴) = (𝐺𝑦))
629628ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 < 𝐴) → (𝐹𝐴) = (𝐺𝑦))
630 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 < 𝐴) → (𝐺𝑦) ∈ 𝑢)
631629, 630eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 < 𝐴) → (𝐹𝐴) ∈ 𝑢)
632 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 < 𝐴) → ¬ (𝐹𝐴) ∈ 𝑢)
633631, 632pm2.65da 815 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → ¬ 𝑦 < 𝐴)
6344anim1i 616 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ))
635634ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → (𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ))
636 lenlt 10719 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴𝑦 ↔ ¬ 𝑦 < 𝐴))
637635, 636syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → (𝐴𝑦 ↔ ¬ 𝑦 < 𝐴))
638633, 637mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → 𝐴𝑦)
639607, 612, 638syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝐴𝑦)
640 ltpnf 12516 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℝ → 𝑦 < +∞)
641640ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 < +∞)
642447adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*))
643377notbii 322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑦 ∈ (𝐵(,)+∞) ↔ ¬ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
644643biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 ∈ (𝐵(,)+∞) → ¬ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
645644adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ¬ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
646 imnan 402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) → ¬ (𝐵 < 𝑦𝑦 < +∞)) ↔ ¬ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
647645, 646sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) → ¬ (𝐵 < 𝑦𝑦 < +∞)))
648642, 647mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ¬ (𝐵 < 𝑦𝑦 < +∞))
649 ancom 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 < 𝑦𝑦 < +∞) ↔ (𝑦 < +∞ ∧ 𝐵 < 𝑦))
650648, 649sylnib 330 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ¬ (𝑦 < +∞ ∧ 𝐵 < 𝑦))
651 imnan 402 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 < +∞ → ¬ 𝐵 < 𝑦) ↔ ¬ (𝑦 < +∞ ∧ 𝐵 < 𝑦))
652650, 651sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝑦 < +∞ → ¬ 𝐵 < 𝑦))
653641, 652mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ¬ 𝐵 < 𝑦)
654469adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ))
655 lenlt 10719 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦𝐵 ↔ ¬ 𝐵 < 𝑦))
656654, 655syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝑦𝐵 ↔ ¬ 𝐵 < 𝑦))
657653, 656mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦𝐵)
658608, 657sylancom 590 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦𝐵)
659263ad5antr 732 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
660659, 386syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
661611, 639, 658, 660mpbir3and 1338 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝐴[,]𝐵))
662609, 610, 661, 423syl21anc 835 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝐹𝑢))
663 simpllr 774 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
664662, 663eleqtrd 2915 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
665664, 427syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦𝑤)
666 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝐴 → (𝐺𝑦) = (𝐺𝐴))
66727ancli 551 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝜑𝐴 ∈ (𝐴[,]𝐵)))
668 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝐴 → (𝑦 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵)))
669668anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = 𝐴 → ((𝜑𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑𝐴 ∈ (𝐴[,]𝐵))))
670 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
671666, 670eqeq12d 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = 𝐴 → ((𝐺𝑦) = (𝐹𝑦) ↔ (𝐺𝐴) = (𝐹𝐴)))
672669, 671imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = 𝐴 → (((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) = (𝐹𝑦)) ↔ ((𝜑𝐴 ∈ (𝐴[,]𝐵)) → (𝐺𝐴) = (𝐹𝐴))))
673672, 138vtoclg 3567 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∈ ℝ → ((𝜑𝐴 ∈ (𝐴[,]𝐵)) → (𝐺𝐴) = (𝐹𝐴)))
6744, 667, 673sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐺𝐴) = (𝐹𝐴))
675666, 674sylan9eqr 2878 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 = 𝐴) → (𝐺𝑦) = (𝐹𝐴))
676675ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ 𝑦 = 𝐴) → (𝐺𝑦) = (𝐹𝐴))
677 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝜑)
678615ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑦 ∈ ℝ*))
679449ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → -∞ < 𝑦)
680 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ∈ ℝ)
681677, 4syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝐴 ∈ ℝ)
682446adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → 𝑦 ∈ ℝ*)
68323ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → 𝐴 ∈ ℝ*)
684640ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → 𝑦 < +∞)
685 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ 𝑦 ∈ (𝐴(,)+∞))
686443a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → +∞ ∈ ℝ*)
687683, 686, 6823jca 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*))
688 elioo3g 12768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ (𝐴(,)+∞) ↔ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < +∞)))
689688notbii 322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑦 ∈ (𝐴(,)+∞) ↔ ¬ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < +∞)))
690689biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑦 ∈ (𝐴(,)+∞) → ¬ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < +∞)))
691 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((¬ 𝑦 ∈ (𝐴(,)+∞) → ¬ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < +∞))) ↔ ((¬ 𝑦 ∈ (𝐴(,)+∞) ∧ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*)) → ¬ (𝐴 < 𝑦𝑦 < +∞)))
692690, 691mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((¬ 𝑦 ∈ (𝐴(,)+∞) ∧ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*)) → ¬ (𝐴 < 𝑦𝑦 < +∞))
693685, 687, 692syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ (𝐴 < 𝑦𝑦 < +∞))
694 ancom 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐴 < 𝑦𝑦 < +∞) ↔ (𝑦 < +∞ ∧ 𝐴 < 𝑦))
695693, 694sylnib 330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ (𝑦 < +∞ ∧ 𝐴 < 𝑦))
696 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ (𝑦 < +∞ ∧ 𝐴 < 𝑦)) ↔ ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ 𝑦 < +∞) → ¬ 𝐴 < 𝑦))
697695, 696mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ 𝑦 < +∞) → ¬ 𝐴 < 𝑦)
698684, 697mpdan 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ 𝐴 < 𝑦)
699682, 683, 698xrnltled 10709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → 𝑦𝐴)
700699adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝑦𝐴)
701 neqne 3024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 = 𝐴𝑦𝐴)
702701necomd 3071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑦 = 𝐴𝐴𝑦)
703702adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝐴𝑦)
704680, 681, 700, 703leneltd 10794 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝑦 < 𝐴)
705679, 704jca 514 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → (-∞ < 𝑦𝑦 < 𝐴))
706678, 705, 619sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ∈ (-∞(,)𝐴))
707677, 706, 626syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → (𝐺𝑦) = (𝐹𝐴))
708676, 707pm2.61dan 811 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐺𝑦) = (𝐹𝐴))
709708eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐹𝐴) = (𝐺𝑦))
710709ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐹𝐴) = (𝐺𝑦))
711 simpllr 774 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐺𝑦) ∈ 𝑢)
712710, 711eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐹𝐴) ∈ 𝑢)
713 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ (𝐹𝐴) ∈ 𝑢)
714712, 713condan 816 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → 𝑦 ∈ (𝐴(,)+∞))
715607, 612, 714syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝐴(,)+∞))
716665, 715elind 4171 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)))
717716adantlr 713 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)))
718 pm5.6 998 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ↔ ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝐵(,)+∞) ∨ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)))))
719717, 718mpbi 232 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝐵(,)+∞) ∨ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))))
720719orcomd 867 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) ∨ 𝑦 ∈ (𝐵(,)+∞)))
721 elun 4125 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ↔ (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) ∨ 𝑦 ∈ (𝐵(,)+∞)))
722720, 721sylibr 236 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)))
7237223adantll2 41349 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)))
724 simp1ll 1232 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → 𝜑)
725724ad2antrr 724 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝜑)
726 simpll3 1210 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
727 simpr 487 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝐵) ∈ 𝑢)
728505ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → 𝐺 Fn ℝ)
729 ioossre 12799 . . . . . . . . . . . . . . . . . . 19 (𝐴(,)+∞) ⊆ ℝ
730729olci 862 . . . . . . . . . . . . . . . . . 18 (𝑤 ⊆ ℝ ∨ (𝐴(,)+∞) ⊆ ℝ)
731 inss 4215 . . . . . . . . . . . . . . . . . 18 ((𝑤 ⊆ ℝ ∨ (𝐴(,)+∞) ⊆ ℝ) → (𝑤 ∩ (𝐴(,)+∞)) ⊆ ℝ)
732730, 731ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑤 ∩ (𝐴(,)+∞)) ⊆ ℝ
733732a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑤 ∩ (𝐴(,)+∞)) ⊆ ℝ)
734 ioossre 12799 . . . . . . . . . . . . . . . . 17 (𝐵(,)+∞) ⊆ ℝ
735734a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐵(,)+∞) ⊆ ℝ)
736 unima 6739 . . . . . . . . . . . . . . . 16 ((𝐺 Fn ℝ ∧ (𝑤 ∩ (𝐴(,)+∞)) ⊆ ℝ ∧ (𝐵(,)+∞) ⊆ ℝ) → (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) = ((𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ∪ (𝐺 “ (𝐵(,)+∞))))
737728, 733, 735, 736syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) = ((𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ∪ (𝐺 “ (𝐵(,)+∞))))
738 simpll 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → 𝜑)
739732sseli 3963 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) → 𝑦 ∈ ℝ)
740739ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → 𝑦 ∈ ℝ)
741738, 740, 447syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*))
742 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) ∧ 𝐵 < 𝑦) → 𝐵 < 𝑦)
743739ltpnfd 12517 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) → 𝑦 < +∞)
744743adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) ∧ 𝐵 < 𝑦) → 𝑦 < +∞)
745742, 744jca 514 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) ∧ 𝐵 < 𝑦) → (𝐵 < 𝑦𝑦 < +∞))
746745adantll 712 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐵 < 𝑦𝑦 < +∞))
747741, 746, 377sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → 𝑦 ∈ (𝐵(,)+∞))
748738, 747, 399syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐺𝑦) = (𝐹𝐵))
749748adantllr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐺𝑦) = (𝐹𝐵))
750 simpllr 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐹𝐵) ∈ 𝑢)
751749, 750eqeltrd 2913 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐺𝑦) ∈ 𝑢)
752751adantl3r 748 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐺𝑦) ∈ 𝑢)
753 simp-4l 781 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝜑)
754 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)))
755 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → ¬ 𝐵 < 𝑦)
756 simpll 765 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝜑)
757739adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) → 𝑦 ∈ ℝ)
758757adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦 ∈ ℝ)
7594adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) → 𝐴 ∈ ℝ)
760 elinel2 4173 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) → 𝑦 ∈ (𝐴(,)+∞))
761688biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (𝐴(,)+∞) → ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < +∞)))
762761simprld 770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝐴(,)+∞) → 𝐴 < 𝑦)
763760, 762syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) → 𝐴 < 𝑦)
764763adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) → 𝐴 < 𝑦)
765759, 757, 764ltled 10788 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) → 𝐴𝑦)
766765adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝐴𝑦)
767 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → ¬ 𝐵 < 𝑦)
768756, 758, 469syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ))
769768, 655syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦𝐵 ↔ ¬ 𝐵 < 𝑦))
770767, 769mpbird 259 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦𝐵)
771263ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
772771, 386syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
773758, 766, 770, 772mpbir3and 1338 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦 ∈ (𝐴[,]𝐵))
774756, 773, 138syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐺𝑦) = (𝐹𝑦))
775753, 754, 755, 774syl21anc 835 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐺𝑦) = (𝐹𝑦))
776 elinel1 4172 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) → 𝑦𝑤)
777776ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦𝑤)
778777, 773jca 514 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦𝑤𝑦 ∈ (𝐴[,]𝐵)))
779778adantllr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦𝑤𝑦 ∈ (𝐴[,]𝐵)))
780779, 150sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
781196ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
782780, 781eleqtrd 2915 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦 ∈ (𝐹𝑢))
78317ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝐹 Fn (𝐴[,]𝐵))
784783, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
785782, 784mpbid 234 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢))
786785simprd 498 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐹𝑦) ∈ 𝑢)
787786adantllr 717 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐹𝑦) ∈ 𝑢)
788775, 787eqeltrd 2913 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐺𝑦) ∈ 𝑢)
789752, 788pm2.61dan 811 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) → (𝐺𝑦) ∈ 𝑢)
790789ralrimiva 3182 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → ∀𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))(𝐺𝑦) ∈ 𝑢)
791 fndm 6455 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 Fn ℝ → dom 𝐺 = ℝ)
792505, 791syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐺 = ℝ)
793732, 792sseqtrrid 4020 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑤 ∩ (𝐴(,)+∞)) ⊆ dom 𝐺)
794167, 793jca 514 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Fun 𝐺 ∧ (𝑤 ∩ (𝐴(,)+∞)) ⊆ dom 𝐺))
795794ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (Fun 𝐺 ∧ (𝑤 ∩ (𝐴(,)+∞)) ⊆ dom 𝐺))
796 funimass4 6730 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐺 ∧ (𝑤 ∩ (𝐴(,)+∞)) ⊆ dom 𝐺) → ((𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ⊆ 𝑢 ↔ ∀𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))(𝐺𝑦) ∈ 𝑢))
797795, 796syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ⊆ 𝑢 ↔ ∀𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))(𝐺𝑦) ∈ 𝑢))
798790, 797mpbird 259 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ⊆ 𝑢)
799339adantlr 713 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝐵(,)+∞)) ⊆ 𝑢)
800798, 799unssd 4162 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ∪ (𝐺 “ (𝐵(,)+∞))) ⊆ 𝑢)
801737, 800eqsstrd 4005 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) ⊆ 𝑢)
802725, 726, 727, 801syl21anc 835 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) ⊆ 𝑢)
803 eleq2 2901 . . . . . . . . . . . . . . 15 (𝑣 = ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) → (𝑦𝑣𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))))
804 imaeq2 5925 . . . . . . . . . . . . . . . 16 (𝑣 = ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) → (𝐺𝑣) = (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))))
805804sseq1d 3998 . . . . . . . . . . . . . . 15 (𝑣 = ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) → ((𝐺𝑣) ⊆ 𝑢 ↔ (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) ⊆ 𝑢))
806803, 805anbi12d 632 . . . . . . . . . . . . . 14 (𝑣 = ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) → ((𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) ↔ (𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∧ (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) ⊆ 𝑢)))
807806rspcev 3623 . . . . . . . . . . . . 13 ((((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∈ 𝐽 ∧ (𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∧ (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
808606, 723, 802, 807syl12anc 834 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
809 simpll2 1209 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑤𝐽)
810 iooretop 23374 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
811810, 1eleqtrri 2912 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ∈ 𝐽
812 inopn 21507 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑤𝐽 ∧ (𝐴(,)𝐵) ∈ 𝐽) → (𝑤 ∩ (𝐴(,)𝐵)) ∈ 𝐽)
81380, 811, 812mp3an13 1448 . . . . . . . . . . . . . 14 (𝑤𝐽 → (𝑤 ∩ (𝐴(,)𝐵)) ∈ 𝐽)
814809, 813syl 17 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝑤 ∩ (𝐴(,)𝐵)) ∈ 𝐽)
815 simp-4r 782 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ℝ)
816638adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝐴𝑦)
817 simpll 765 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝜑𝑦 ∈ ℝ))
818817, 405, 657syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦𝐵)
819818adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦𝐵)
820 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝜑)
821820, 263syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
822821, 386syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
823815, 816, 819, 822mpbir3and 1338 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝐴[,]𝐵))
824823adantllr 717 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝐴[,]𝐵))
825820, 823, 138syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐺𝑦) = (𝐹𝑦))
826825adantllr 717 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐺𝑦) = (𝐹𝑦))
827 simp-4r 782 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐺𝑦) ∈ 𝑢)
828826, 827eqeltrrd 2914 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐹𝑦) ∈ 𝑢)
829 simp-5l 783 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝜑)
830829, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝐹 Fn (𝐴[,]𝐵))
831830, 144syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
832824, 828, 831mpbir2and 711 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝐹𝑢))
833 simpllr 774 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
834832, 833eleqtrd 2915 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
835834, 427syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦𝑤)
836 simp-5r 784 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ℝ)
837829, 836, 824jca31 517 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)))
838 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ (𝐹𝐴) ∈ 𝑢)
839828, 838jca 514 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ((𝐹𝑦) ∈ 𝑢 ∧ ¬ (𝐹𝐴) ∈ 𝑢))
840 nelneq 2937 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) ∈ 𝑢 ∧ ¬ (𝐹𝐴) ∈ 𝑢) → ¬ (𝐹𝑦) = (𝐹𝐴))
841670necon3bi 3042 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑦) = (𝐹𝐴) → 𝑦𝐴)
842839, 840, 8413syl 18 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦𝐴)
843 simpr 487 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ (𝐹𝐵) ∈ 𝑢)
844828, 843jca 514 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ((𝐹𝑦) ∈ 𝑢 ∧ ¬ (𝐹𝐵) ∈ 𝑢))
845 nelneq 2937 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) ∈ 𝑢 ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ (𝐹𝑦) = (𝐹𝐵))
846 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
847846necon3bi 3042 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑦) = (𝐹𝐵) → 𝑦𝐵)
848844, 845, 8473syl 18 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦𝐵)
849614ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝐴 ∈ ℝ*)
850442ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝐵 ∈ ℝ*)
851445ad4antlr 731 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ*)
852849, 850, 8513jca 1124 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*))
853 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) → 𝑦𝐴)
8544ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
855 simplr 767 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
856263adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
857856, 386syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
858136, 857mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
859858simp2d 1139 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
860859adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
861854, 855, 8603jca 1124 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴𝑦))
862861adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) → (𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴𝑦))
863 leltne 10730 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴𝑦) → (𝐴 < 𝑦𝑦𝐴))
864862, 863syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) → (𝐴 < 𝑦𝑦𝐴))
865853, 864mpbird 259 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) → 𝐴 < 𝑦)
866865adantr 483 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝐴 < 𝑦)
867 necom 3069 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝐵𝑦)
868867biimpi 218 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵𝐵𝑦)
869868adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐵) → 𝐵𝑦)
8705ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
871858simp3d 1140 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
872871adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
873855, 870, 8723jca 1124 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦𝐵))
874873adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐵) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦𝐵))
875 leltne 10730 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦𝐵) → (𝑦 < 𝐵𝐵𝑦))
876874, 875syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐵) → (𝑦 < 𝐵𝐵𝑦))
877869, 876mpbird 259 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐵) → 𝑦 < 𝐵)
878877adantlr 713 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 < 𝐵)
879866, 878jca 514 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (𝐴 < 𝑦𝑦 < 𝐵))
880 elioo3g 12768 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < 𝐵)))
881852, 879, 880sylanbrc 585 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ (𝐴(,)𝐵))
882837, 842, 848, 881syl21anc 835 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝐴(,)𝐵))
883835, 882elind 4171 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)))
8848833adantll2 41349 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)))
885166a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → Fun 𝐺)
886 fvelima 6731 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐺𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → ∃𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))(𝐺𝑦) = 𝑡)
887885, 886sylancom 590 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → ∃𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))(𝐺𝑦) = 𝑡)
888 simp3 1134 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → (𝐺𝑦) = 𝑡)
889 simp1l 1193 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → 𝜑)
890 inss2 4206 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∩ (𝐴(,)𝐵)) ⊆ (𝐴(,)𝐵)
891 ioossicc 12823 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
892890, 891sstri 3976 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∩ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵)
893892sseli 3963 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
8948933ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → 𝑦 ∈ (𝐴[,]𝐵))
895889, 894, 138syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → (𝐺𝑦) = (𝐹𝑦))
896 sslin 4211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (𝑤 ∩ (𝐴(,)𝐵)) ⊆ (𝑤 ∩ (𝐴[,]𝐵)))
897891, 896ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∩ (𝐴(,)𝐵)) ⊆ (𝑤 ∩ (𝐴[,]𝐵))
898897sseli 3963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
899898adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
900196adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
901899, 900eleqtrd 2915 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐹𝑢))
902901adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐹𝑢))
90317ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → 𝐹 Fn (𝐴[,]𝐵))
904903, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
905902, 904mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢))
906905simprd 498 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → (𝐹𝑦) ∈ 𝑢)
9079063adant3 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → (𝐹𝑦) ∈ 𝑢)
908895, 907eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → (𝐺𝑦) ∈ 𝑢)
909888, 908eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → 𝑡𝑢)
9109093exp 1115 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) → ((𝐺𝑦) = 𝑡𝑡𝑢)))
911910adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) → ((𝐺𝑦) = 𝑡𝑡𝑢)))
912911rexlimdv 3283 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → (∃𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))(𝐺𝑦) = 𝑡𝑡𝑢))
913887, 912mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → 𝑡𝑢)
914913ralrimiva 3182 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → ∀𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))𝑡𝑢)
915 dfss3 3956 . . . . . . . . . . . . . . . . 17 ((𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢 ↔ ∀𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))𝑡𝑢)
916914, 915sylibr 236 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)
917916ad4ant14 750 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)
9189173adant2 1127 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)
919918ad2antrr 724 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)
920 eleq2 2901 . . . . . . . . . . . . . . 15 (𝑣 = (𝑤 ∩ (𝐴(,)𝐵)) → (𝑦𝑣𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))))
921 imaeq2 5925 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑤 ∩ (𝐴(,)𝐵)) → (𝐺𝑣) = (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))))
922921sseq1d 3998 . . . . . . . . . . . . . . 15 (𝑣 = (𝑤 ∩ (𝐴(,)𝐵)) → ((𝐺𝑣) ⊆ 𝑢 ↔ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢))
923920, 922anbi12d 632 . . . . . . . . . . . . . 14 (𝑣 = (𝑤 ∩ (𝐴(,)𝐵)) → ((𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) ↔ (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)))
924923rspcev 3623 . . . . . . . . . . . . 13 (((𝑤 ∩ (𝐴(,)𝐵)) ∈ 𝐽 ∧ (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
925814, 884, 919, 924syl12anc 834 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
926808, 925pm2.61dan 811 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
927597, 926pm2.61dan 811 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
92894, 927syld3an1 1406 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
929928rexlimdv3a 3286 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → (∃𝑤𝐽 (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))
93089, 929mpd 15 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
931930ex 415 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) → ((𝐺𝑦) ∈ 𝑢 → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))
932931ralrimiva 3182 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ∀𝑢 ∈ (𝐾t ran 𝐹)((𝐺𝑦) ∈ 𝑢 → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))
9333a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝐽 ∈ (TopOn‘ℝ))
934 resttopon 21769 . . . . . . . 8 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝑌) → (𝐾t ran 𝐹) ∈ (TopOn‘ran 𝐹))
93513, 72, 934syl2anc 586 . . . . . . 7 (𝜑 → (𝐾t ran 𝐹) ∈ (TopOn‘ran 𝐹))
936935adantr 483 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐾t ran 𝐹) ∈ (TopOn‘ran 𝐹))
937 iscnp 21845 . . . . . 6 ((𝐽 ∈ (TopOn‘ℝ) ∧ (𝐾t ran 𝐹) ∈ (TopOn‘ran 𝐹) ∧ 𝑦 ∈ ℝ) → (𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦) ↔ (𝐺:ℝ⟶ran 𝐹 ∧ ∀𝑢 ∈ (𝐾t ran 𝐹)((𝐺𝑦) ∈ 𝑢 → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))))
938933, 936, 467, 937syl3anc 1367 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦) ↔ (𝐺:ℝ⟶ran 𝐹 ∧ ∀𝑢 ∈ (𝐾t ran 𝐹)((𝐺𝑦) ∈ 𝑢 → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))))
93967, 932, 938mpbir2and 711 . . . 4 ((𝜑𝑦 ∈ ℝ) → 𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦))
940939ralrimiva 3182 . . 3 (𝜑 → ∀𝑦 ∈ ℝ 𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦))
941 cncnp 21888 . . . 4 ((𝐽 ∈ (TopOn‘ℝ) ∧ (𝐾t ran 𝐹) ∈ (TopOn‘ran 𝐹)) → (𝐺 ∈ (𝐽 Cn (𝐾t ran 𝐹)) ↔ (𝐺:ℝ⟶ran 𝐹 ∧ ∀𝑦 ∈ ℝ 𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦))))
9423, 935, 941sylancr 589 . . 3 (𝜑 → (𝐺 ∈ (𝐽 Cn (𝐾t ran 𝐹)) ↔ (𝐺:ℝ⟶ran 𝐹 ∧ ∀𝑦 ∈ ℝ 𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦))))
94366, 940, 942mpbir2and 711 . 2 (𝜑𝐺 ∈ (𝐽 Cn (𝐾t ran 𝐹)))
944 fnssres 6470 . . . 4 ((𝐺 Fn ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐺 ↾ (𝐴[,]𝐵)) Fn (𝐴[,]𝐵))
945505, 6, 944syl2anc 586 . . 3 (𝜑 → (𝐺 ↾ (𝐴[,]𝐵)) Fn (𝐴[,]𝐵))
946 fvres 6689 . . . . 5 (𝑦 ∈ (𝐴[,]𝐵) → ((𝐺 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐺𝑦))
947946adantl 484 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐺 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐺𝑦))
948947, 138eqtrd 2856 . . 3 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐺 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
949945, 17, 948eqfnfvd 6805 . 2 (𝜑 → (𝐺 ↾ (𝐴[,]𝐵)) = 𝐹)
950943, 949jca 514 1 (𝜑 → (𝐺 ∈ (𝐽 Cn (𝐾t ran 𝐹)) ∧ (𝐺 ↾ (𝐴[,]𝐵)) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wnfc 2961  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  ifcif 4467  {csn 4567   cuni 4838   class class class wbr 5066  cmpt 5146  ccnv 5554  dom cdm 5555  ran crn 5556  cres 5557  cima 5558  Fun wfun 6349   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  (,)cioo 12739  [,]cicc 12742  t crest 16694  topGenctg 16711  Topctop 21501  TopOnctopon 21518   Cn ccn 21832   CnP ccnp 21833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-ioo 12743  df-icc 12746  df-rest 16696  df-topgen 16717  df-top 21502  df-topon 21519  df-bases 21554  df-cn 21835  df-cnp 21836
This theorem is referenced by:  itgsubsticclem  42309
  Copyright terms: Public domain W3C validator