Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icccncfext Structured version   Visualization version   GIF version

Theorem icccncfext 43435
Description: A continuous function on a closed interval can be extended to a continuous function on the whole real line. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
icccncfext.1 𝑥𝐹
icccncfext.2 𝐽 = (topGen‘ran (,))
icccncfext.3 𝑌 = 𝐾
icccncfext.4 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴[,]𝐵), (𝐹𝑥), if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
icccncfext.5 (𝜑𝐴 ∈ ℝ)
icccncfext.6 (𝜑𝐵 ∈ ℝ)
icccncfext.7 (𝜑𝐴𝐵)
icccncfext.8 (𝜑𝐾 ∈ Top)
icccncfext.9 (𝜑𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐾))
Assertion
Ref Expression
icccncfext (𝜑 → (𝐺 ∈ (𝐽 Cn (𝐾t ran 𝐹)) ∧ (𝐺 ↾ (𝐴[,]𝐵)) = 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝑌(𝑥)

Proof of Theorem icccncfext
Dummy variables 𝑡 𝑤 𝑦 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccncfext.2 . . . . . . . . . . . 12 𝐽 = (topGen‘ran (,))
2 retopon 23936 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
31, 2eqeltri 2836 . . . . . . . . . . 11 𝐽 ∈ (TopOn‘ℝ)
4 icccncfext.5 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
5 icccncfext.6 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 13175 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 resttopon 22321 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘ℝ) ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
83, 6, 7sylancr 587 . . . . . . . . . 10 (𝜑 → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
9 icccncfext.8 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Top)
10 icccncfext.3 . . . . . . . . . . . 12 𝑌 = 𝐾
119, 10jctir 521 . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ Top ∧ 𝑌 = 𝐾))
12 istopon 22070 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) ↔ (𝐾 ∈ Top ∧ 𝑌 = 𝐾))
1311, 12sylibr 233 . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
14 icccncfext.9 . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐾))
15 cnf2 22409 . . . . . . . . . 10 (((𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐾)) → 𝐹:(𝐴[,]𝐵)⟶𝑌)
168, 13, 14, 15syl3anc 1370 . . . . . . . . 9 (𝜑𝐹:(𝐴[,]𝐵)⟶𝑌)
1716ffnd 6610 . . . . . . . 8 (𝜑𝐹 Fn (𝐴[,]𝐵))
18 dffn3 6622 . . . . . . . 8 (𝐹 Fn (𝐴[,]𝐵) ↔ 𝐹:(𝐴[,]𝐵)⟶ran 𝐹)
1917, 18sylib 217 . . . . . . 7 (𝜑𝐹:(𝐴[,]𝐵)⟶ran 𝐹)
2019ffvelrnda 6970 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ ran 𝐹)
21 fnfun 6542 . . . . . . . . . 10 (𝐹 Fn (𝐴[,]𝐵) → Fun 𝐹)
2217, 21syl 17 . . . . . . . . 9 (𝜑 → Fun 𝐹)
234rexrd 11034 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
245rexrd 11034 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
25 icccncfext.7 . . . . . . . . . . 11 (𝜑𝐴𝐵)
26 lbicc2 13205 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2723, 24, 25, 26syl3anc 1370 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐴[,]𝐵))
2817fndmd 6547 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (𝐴[,]𝐵))
2928eqcomd 2745 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = dom 𝐹)
3027, 29eleqtrd 2842 . . . . . . . . 9 (𝜑𝐴 ∈ dom 𝐹)
31 fvelrn 6963 . . . . . . . . 9 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
3222, 30, 31syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝐴) ∈ ran 𝐹)
33 ubicc2 13206 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
3423, 24, 25, 33syl3anc 1370 . . . . . . . . . 10 (𝜑𝐵 ∈ (𝐴[,]𝐵))
3534, 29eleqtrd 2842 . . . . . . . . 9 (𝜑𝐵 ∈ dom 𝐹)
36 fvelrn 6963 . . . . . . . . 9 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ ran 𝐹)
3722, 35, 36syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝐵) ∈ ran 𝐹)
3832, 37ifcld 4506 . . . . . . 7 (𝜑 → if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ ran 𝐹)
3938adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)) → if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ ran 𝐹)
4020, 39ifclda 4495 . . . . 5 (𝜑 → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ ran 𝐹)
4140adantr 481 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ ran 𝐹)
42 icccncfext.4 . . . . 5 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴[,]𝐵), (𝐹𝑥), if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
43 nfv 1918 . . . . . . 7 𝑦 𝑥 ∈ (𝐴[,]𝐵)
44 nfcv 2908 . . . . . . 7 𝑦(𝐹𝑥)
45 nfcv 2908 . . . . . . 7 𝑦if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵))
4643, 44, 45nfif 4490 . . . . . 6 𝑦if(𝑥 ∈ (𝐴[,]𝐵), (𝐹𝑥), if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
47 nfv 1918 . . . . . . 7 𝑥 𝑦 ∈ (𝐴[,]𝐵)
48 icccncfext.1 . . . . . . . 8 𝑥𝐹
49 nfcv 2908 . . . . . . . 8 𝑥𝑦
5048, 49nffv 6793 . . . . . . 7 𝑥(𝐹𝑦)
51 nfv 1918 . . . . . . . 8 𝑥 𝑦 < 𝐴
52 nfcv 2908 . . . . . . . . 9 𝑥𝐴
5348, 52nffv 6793 . . . . . . . 8 𝑥(𝐹𝐴)
54 nfcv 2908 . . . . . . . . 9 𝑥𝐵
5548, 54nffv 6793 . . . . . . . 8 𝑥(𝐹𝐵)
5651, 53, 55nfif 4490 . . . . . . 7 𝑥if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))
5747, 50, 56nfif 4490 . . . . . 6 𝑥if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
58 eleq1 2827 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑦 ∈ (𝐴[,]𝐵)))
59 fveq2 6783 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
60 breq1 5078 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 < 𝐴𝑦 < 𝐴))
6160ifbid 4483 . . . . . . 7 (𝑥 = 𝑦 → if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
6258, 59, 61ifbieq12d 4488 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 ∈ (𝐴[,]𝐵), (𝐹𝑥), if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
6346, 57, 62cbvmpt 5186 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴[,]𝐵), (𝐹𝑥), if(𝑥 < 𝐴, (𝐹𝐴), (𝐹𝐵)))) = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
6442, 63eqtri 2767 . . . 4 𝐺 = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
6541, 64fmptd 6997 . . 3 (𝜑𝐺:ℝ⟶ran 𝐹)
6665adantr 481 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 𝐺:ℝ⟶ran 𝐹)
67 simplll 772 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → 𝜑)
68 simplr 766 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → 𝑢 ∈ (𝐾t ran 𝐹))
6967, 68jca 512 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → (𝜑𝑢 ∈ (𝐾t ran 𝐹)))
70 ssidd 3945 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ ran 𝐹)
7116frnd 6617 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹𝑌)
72 cnrest2 22446 . . . . . . . . . . . . 13 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹𝑌) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐾) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐾t ran 𝐹))))
7313, 70, 71, 72syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐾) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐾t ran 𝐹))))
7414, 73mpbid 231 . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐾t ran 𝐹)))
7574anim1i 615 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝐾t ran 𝐹)) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐾t ran 𝐹)) ∧ 𝑢 ∈ (𝐾t ran 𝐹)))
76 cnima 22425 . . . . . . . . . 10 ((𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐾t ran 𝐹)) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) → (𝐹𝑢) ∈ (𝐽t (𝐴[,]𝐵)))
7769, 75, 763syl 18 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → (𝐹𝑢) ∈ (𝐽t (𝐴[,]𝐵)))
78 retop 23934 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
791, 78eqeltri 2836 . . . . . . . . . . . . 13 𝐽 ∈ Top
8079a1i 11 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
81 reex 10971 . . . . . . . . . . . . . 14 ℝ ∈ V
8281a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
8382, 6ssexd 5249 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ∈ V)
8480, 83jca 512 . . . . . . . . . . 11 (𝜑 → (𝐽 ∈ Top ∧ (𝐴[,]𝐵) ∈ V))
8567, 84syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → (𝐽 ∈ Top ∧ (𝐴[,]𝐵) ∈ V))
86 elrest 17147 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐹𝑢) ∈ (𝐽t (𝐴[,]𝐵)) ↔ ∃𝑤𝐽 (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))))
8785, 86syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → ((𝐹𝑢) ∈ (𝐽t (𝐴[,]𝐵)) ↔ ∃𝑤𝐽 (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))))
8877, 87mpbid 231 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → ∃𝑤𝐽 (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
89673ad2ant1 1132 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → 𝜑)
90 simpllr 773 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → 𝑦 ∈ ℝ)
91903ad2ant1 1132 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
92 simp1r 1197 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺𝑦) ∈ 𝑢)
9389, 91, 92jca31 515 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → ((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢))
94 simpll2 1212 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑤𝐽)
95 iooretop 23938 . . . . . . . . . . . . . . . . 17 (-∞(,)𝐴) ∈ (topGen‘ran (,))
9695, 1eleqtrri 2839 . . . . . . . . . . . . . . . 16 (-∞(,)𝐴) ∈ 𝐽
97 iooretop 23938 . . . . . . . . . . . . . . . . 17 (𝐵(,)+∞) ∈ (topGen‘ran (,))
9897, 1eleqtrri 2839 . . . . . . . . . . . . . . . 16 (𝐵(,)+∞) ∈ 𝐽
99 unopn 22061 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ (-∞(,)𝐴) ∈ 𝐽 ∧ (𝐵(,)+∞) ∈ 𝐽) → ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ 𝐽)
10079, 96, 98, 99mp3an 1460 . . . . . . . . . . . . . . 15 ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ 𝐽
101 unopn 22061 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑤𝐽 ∧ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ 𝐽) → (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∈ 𝐽)
10279, 100, 101mp3an13 1451 . . . . . . . . . . . . . 14 (𝑤𝐽 → (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∈ 𝐽)
10394, 102syl 17 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∈ 𝐽)
104 simpl1l 1223 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝜑𝑦 ∈ ℝ))
105104adantr 481 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝜑𝑦 ∈ ℝ))
106 simpl1r 1224 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺𝑦) ∈ 𝑢)
107106adantr 481 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺𝑦) ∈ 𝑢)
108 simpll3 1213 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
109 difreicc 13225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
1104, 5, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
111110eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) = (ℝ ∖ (𝐴[,]𝐵)))
112111eleq2d 2825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ 𝑦 ∈ (ℝ ∖ (𝐴[,]𝐵))))
113112notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ ¬ 𝑦 ∈ (ℝ ∖ (𝐴[,]𝐵))))
114113biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ 𝑦 ∈ (ℝ ∖ (𝐴[,]𝐵)))
115 eldif 3898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (ℝ ∖ (𝐴[,]𝐵)) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)))
116114, 115sylnib 328 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)))
117 imnan 400 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ ℝ → ¬ ¬ 𝑦 ∈ (𝐴[,]𝐵)) ↔ ¬ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)))
118116, 117sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑦 ∈ ℝ → ¬ ¬ 𝑦 ∈ (𝐴[,]𝐵)))
119118imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∧ 𝑦 ∈ ℝ) → ¬ ¬ 𝑦 ∈ (𝐴[,]𝐵))
120119notnotrd 133 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ (𝐴[,]𝐵))
121120an32s 649 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦 ∈ (𝐴[,]𝐵))
122121adantlr 712 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦 ∈ (𝐴[,]𝐵))
123 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝜑)
1246sselda 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
12516adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶𝑌)
126125ffvelrnda 6970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ 𝑌)
12716, 27ffvelrnd 6971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝐹𝐴) ∈ 𝑌)
128127ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑦 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦 < 𝐴) → (𝐹𝐴) ∈ 𝑌)
12916, 34ffvelrnd 6971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝐹𝐵) ∈ 𝑌)
130129ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑦 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑦 < 𝐴) → (𝐹𝐵) ∈ 𝑌)
131128, 130ifclda 4495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑦 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑦 ∈ (𝐴[,]𝐵)) → if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ 𝑌)
132126, 131ifclda 4495 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑌)
13364fvmpt2 6895 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ ℝ ∧ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑌) → (𝐺𝑦) = if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
134124, 132, 133syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) = if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
135 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
136135iftrued 4468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝑦))
137134, 136eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) = (𝐹𝑦))
138137eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) = (𝐺𝑦))
139123, 122, 138syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐹𝑦) = (𝐺𝑦))
140 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐺𝑦) ∈ 𝑢)
141139, 140eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐹𝑦) ∈ 𝑢)
142123, 17syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝐹 Fn (𝐴[,]𝐵))
143 elpreima 6944 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 Fn (𝐴[,]𝐵) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
144142, 143syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
145122, 141, 144mpbir2and 710 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦 ∈ (𝐹𝑢))
146145adantlr 712 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦 ∈ (𝐹𝑢))
147 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
148146, 147eleqtrd 2842 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
149 elin 3904 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)) ↔ (𝑦𝑤𝑦 ∈ (𝐴[,]𝐵)))
150148, 149sylib 217 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑦𝑤𝑦 ∈ (𝐴[,]𝐵)))
151150simpld 495 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑦𝑤)
152151ex 413 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → 𝑦𝑤))
153152orrd 860 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∨ 𝑦𝑤))
154153orcomd 868 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝑦𝑤𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
155 elun 4084 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ↔ (𝑦𝑤𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
156154, 155sylibr 233 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → 𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
157105, 107, 108, 156syl21anc 835 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
158 imaundi 6058 . . . . . . . . . . . . . 14 (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) = ((𝐺𝑤) ∪ (𝐺 “ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
159105simpld 495 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝜑)
160 toponss 22085 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘ℝ) ∧ 𝑤𝐽) → 𝑤 ⊆ ℝ)
1613, 94, 160sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑤 ⊆ ℝ)
162159, 161, 108jca31 515 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))))
163 simplr 766 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝐴) ∈ 𝑢)
164 simpr 485 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝐵) ∈ 𝑢)
16542funmpt2 6480 . . . . . . . . . . . . . . . . . . . . . . 23 Fun 𝐺
166165a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → Fun 𝐺)
167166ad5antr 731 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) → Fun 𝐺)
168 fvelima 6844 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐺𝑦 ∈ (𝐺𝑤)) → ∃𝑧𝑤 (𝐺𝑧) = 𝑦)
169167, 168sylancom 588 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) → ∃𝑧𝑤 (𝐺𝑧) = 𝑦)
170 eqcom 2746 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺𝑧) = 𝑦𝑦 = (𝐺𝑧))
171170biimpi 215 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺𝑧) = 𝑦𝑦 = (𝐺𝑧))
1721713ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → 𝑦 = (𝐺𝑧))
173 simp1ll 1235 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → (((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢))
174 simp1lr 1236 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → (𝐹𝐵) ∈ 𝑢)
175 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → 𝑧𝑤)
176 simp-5l 782 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝜑𝑤 ⊆ ℝ))
177 simp-5r 783 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
178 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝑤)
179176, 177, 178jca31 515 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤))
180 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝑧 → (𝑦 ∈ (𝐴[,]𝐵) ↔ 𝑧 ∈ (𝐴[,]𝐵)))
181180anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = 𝑧 → ((𝜑𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑𝑧 ∈ (𝐴[,]𝐵))))
182 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
183 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
184182, 183eqeq12d 2755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = 𝑧 → ((𝐺𝑦) = (𝐹𝑦) ↔ (𝐺𝑧) = (𝐹𝑧)))
185181, 184imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = 𝑧 → (((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) = (𝐹𝑦)) ↔ ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = (𝐹𝑧))))
186185, 137chvarvv 2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = (𝐹𝑧))
187186ad4ant14 749 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = (𝐹𝑧))
188187adantl3r 747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = (𝐹𝑧))
189 simp-4l 780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝜑)
190 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑤 ⊆ ℝ)
191 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝑤)
192 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
193191, 192elind 4129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
194 eqcom 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ↔ (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
195194biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) → (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
196195ad3antlr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
197193, 196eleqtrd 2842 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐹𝑢))
198197adantl3r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐹𝑢))
199 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑤 ⊆ ℝ) ∧ 𝑧 ∈ (𝐹𝑢)) → 𝑧 ∈ (𝐹𝑢))
20017ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑤 ⊆ ℝ) ∧ 𝑧 ∈ (𝐹𝑢)) → 𝐹 Fn (𝐴[,]𝐵))
201 elpreima 6944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹 Fn (𝐴[,]𝐵) → (𝑧 ∈ (𝐹𝑢) ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) ∈ 𝑢)))
202200, 201syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑤 ⊆ ℝ) ∧ 𝑧 ∈ (𝐹𝑢)) → (𝑧 ∈ (𝐹𝑢) ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) ∈ 𝑢)))
203199, 202mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑤 ⊆ ℝ) ∧ 𝑧 ∈ (𝐹𝑢)) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) ∈ 𝑢))
204203simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑤 ⊆ ℝ) ∧ 𝑧 ∈ (𝐹𝑢)) → (𝐹𝑧) ∈ 𝑢)
205189, 190, 198, 204syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ 𝑢)
206188, 205eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ 𝑢)
207179, 206sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ 𝑢)
208 simp-5l 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝜑)
209 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) ∈ 𝑢)
210208, 209jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝜑 ∧ (𝐹𝐴) ∈ 𝑢))
211 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝐵) ∈ 𝑢)
212 simp-5r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑤 ⊆ ℝ)
213 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝑤)
214212, 213sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ ℝ)
215210, 211, 214jca31 515 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ))
21664a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝐺 = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))))
217 breq1 5078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = 𝑧 → (𝑦 < 𝐴𝑧 < 𝐴))
218217ifbid 4483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝑧 → if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
219180, 183, 218ifbieq12d 4488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = 𝑧 → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
220219adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑦 = 𝑧) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
221 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ ℝ)
222 iffalse 4469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑧 ∈ (𝐴[,]𝐵) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
223222adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
224 simp-5r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑧 < 𝐴) → (𝐹𝐴) ∈ 𝑢)
225 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑧 < 𝐴) → (𝐹𝐵) ∈ 𝑢)
226224, 225ifclda 4495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ 𝑢)
227223, 226eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑢)
228216, 220, 221, 227fvmptd 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
229228, 223eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
230229, 226eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧 ∈ ℝ) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ 𝑢)
231215, 230sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ 𝑢)
232231adantl4r 752 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ 𝑢)
233207, 232pm2.61dan 810 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑧𝑤) → (𝐺𝑧) ∈ 𝑢)
234173, 174, 175, 233syl21anc 835 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → (𝐺𝑧) ∈ 𝑢)
235172, 234eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) ∧ 𝑧𝑤 ∧ (𝐺𝑧) = 𝑦) → 𝑦𝑢)
236235rexlimdv3a 3216 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) → (∃𝑧𝑤 (𝐺𝑧) = 𝑦𝑦𝑢))
237169, 236mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺𝑤)) → 𝑦𝑢)
238237ex 413 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝐺𝑤) → 𝑦𝑢))
239238alrimiv 1931 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ∀𝑦(𝑦 ∈ (𝐺𝑤) → 𝑦𝑢))
240162, 163, 164, 239syl21anc 835 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ∀𝑦(𝑦 ∈ (𝐺𝑤) → 𝑦𝑢))
241 dfss2 3908 . . . . . . . . . . . . . . . 16 ((𝐺𝑤) ⊆ 𝑢 ↔ ∀𝑦(𝑦 ∈ (𝐺𝑤) → 𝑦𝑢))
242240, 241sylibr 233 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺𝑤) ⊆ 𝑢)
243 imaundi 6058 . . . . . . . . . . . . . . . . 17 (𝐺 “ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) = ((𝐺 “ (-∞(,)𝐴)) ∪ (𝐺 “ (𝐵(,)+∞)))
244165a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → Fun 𝐺)
245 fvelima 6844 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐺𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → ∃𝑧 ∈ (-∞(,)𝐴)(𝐺𝑧) = 𝑡)
246244, 245sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → ∃𝑧 ∈ (-∞(,)𝐴)(𝐺𝑧) = 𝑡)
247 simp1l 1196 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) ∧ 𝑧 ∈ (-∞(,)𝐴) ∧ (𝐺𝑧) = 𝑡) → 𝜑)
248 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) ∧ 𝑧 ∈ (-∞(,)𝐴) ∧ (𝐺𝑧) = 𝑡) → 𝑧 ∈ (-∞(,)𝐴))
249 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) ∧ 𝑧 ∈ (-∞(,)𝐴) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = 𝑡)
25064a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → 𝐺 = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))))
251219adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (-∞(,)𝐴)) ∧ 𝑦 = 𝑧) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
252 elioore 13118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (-∞(,)𝐴) → 𝑧 ∈ ℝ)
253252adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ ℝ)
254 elioo3g 13117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑧 ∈ (-∞(,)𝐴) ↔ ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐴)))
255254biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑧 ∈ (-∞(,)𝐴) → ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐴)))
256255simprrd 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 ∈ (-∞(,)𝐴) → 𝑧 < 𝐴)
257256adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → 𝑧 < 𝐴)
258 ltnle 11063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑧 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑧 < 𝐴 ↔ ¬ 𝐴𝑧))
259252, 4, 258syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝑧 < 𝐴 ↔ ¬ 𝐴𝑧))
260257, 259mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → ¬ 𝐴𝑧)
261260intn3an2d 1479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → ¬ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
2624, 5jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
263262adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
264 elicc2 13153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
265263, 264syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
266261, 265mtbird 325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → ¬ 𝑧 ∈ (𝐴[,]𝐵))
267266iffalsed 4471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
268256iftrued 4468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (-∞(,)𝐴) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = (𝐹𝐴))
269268adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = (𝐹𝐴))
270267, 269eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝐴))
271127adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝐹𝐴) ∈ 𝑌)
272270, 271eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑌)
273250, 251, 253, 272fvmptd 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
274273adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (-∞(,)𝐴)) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
275 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (-∞(,)𝐴)) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = 𝑡)
276270adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (-∞(,)𝐴)) ∧ (𝐺𝑧) = 𝑡) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝐴))
277274, 275, 2763eqtr3d 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧 ∈ (-∞(,)𝐴)) ∧ (𝐺𝑧) = 𝑡) → 𝑡 = (𝐹𝐴))
278247, 248, 249, 277syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) ∧ 𝑧 ∈ (-∞(,)𝐴) ∧ (𝐺𝑧) = 𝑡) → 𝑡 = (𝐹𝐴))
279278rexlimdv3a 3216 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → (∃𝑧 ∈ (-∞(,)𝐴)(𝐺𝑧) = 𝑡𝑡 = (𝐹𝐴)))
280246, 279mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → 𝑡 = (𝐹𝐴))
281 velsn 4578 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ {(𝐹𝐴)} ↔ 𝑡 = (𝐹𝐴))
282280, 281sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (𝐺 “ (-∞(,)𝐴))) → 𝑡 ∈ {(𝐹𝐴)})
283282ex 413 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑡 ∈ (𝐺 “ (-∞(,)𝐴)) → 𝑡 ∈ {(𝐹𝐴)}))
284283ssrdv 3928 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐺 “ (-∞(,)𝐴)) ⊆ {(𝐹𝐴)})
285284adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ (-∞(,)𝐴)) ⊆ {(𝐹𝐴)})
286 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) → (𝐹𝐴) ∈ 𝑢)
287286snssd 4743 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) → {(𝐹𝐴)} ⊆ 𝑢)
288285, 287sstrd 3932 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ (-∞(,)𝐴)) ⊆ 𝑢)
289288adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (-∞(,)𝐴)) ⊆ 𝑢)
290 fvelima 6844 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐺𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) → ∃𝑧 ∈ (𝐵(,)+∞)(𝐺𝑧) = 𝑡)
291166, 290sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) → ∃𝑧 ∈ (𝐵(,)+∞)(𝐺𝑧) = 𝑡)
292 simp1l 1196 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) ∧ 𝑧 ∈ (𝐵(,)+∞) ∧ (𝐺𝑧) = 𝑡) → 𝜑)
293 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) ∧ 𝑧 ∈ (𝐵(,)+∞) ∧ (𝐺𝑧) = 𝑡) → 𝑧 ∈ (𝐵(,)+∞))
294 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) ∧ 𝑧 ∈ (𝐵(,)+∞) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = 𝑡)
29564a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐺 = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))))
296219adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ 𝑦 = 𝑧) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
297 elioore 13118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (𝐵(,)+∞) → 𝑧 ∈ ℝ)
298297adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝑧 ∈ ℝ)
29916ffvelrnda 6970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ 𝑌)
300299adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ 𝑌)
3014adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐴 ∈ ℝ)
3025adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐵 ∈ ℝ)
30325adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐴𝐵)
304 elioo3g 13117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑧 ∈ (𝐵(,)+∞) ↔ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑧 ∈ ℝ*) ∧ (𝐵 < 𝑧𝑧 < +∞)))
305304biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑧 ∈ (𝐵(,)+∞) → ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑧 ∈ ℝ*) ∧ (𝐵 < 𝑧𝑧 < +∞)))
306305simprld 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 ∈ (𝐵(,)+∞) → 𝐵 < 𝑧)
307306adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐵 < 𝑧)
308301, 302, 298, 303, 307lelttrd 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → 𝐴 < 𝑧)
309301, 298, 308ltnsymd 11133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → ¬ 𝑧 < 𝐴)
310309iffalsed 4471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = (𝐹𝐵))
311129adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → (𝐹𝐵) ∈ 𝑌)
312310, 311eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ 𝑌)
313312adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ ¬ 𝑧 ∈ (𝐴[,]𝐵)) → if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)) ∈ 𝑌)
314300, 313ifclda 4495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑌)
315295, 296, 298, 314fvmptd 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → (𝐺𝑧) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
316315adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
317 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ (𝐺𝑧) = 𝑡) → (𝐺𝑧) = 𝑡)
318302, 298ltnled 11131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → (𝐵 < 𝑧 ↔ ¬ 𝑧𝐵))
319307, 318mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → ¬ 𝑧𝐵)
320319intn3an3d 1480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → ¬ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
321262adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
322321, 264syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
323320, 322mtbird 325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → ¬ 𝑧 ∈ (𝐴[,]𝐵))
324323iffalsed 4471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
325324, 310eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝐵(,)+∞)) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝐵))
326325adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ (𝐺𝑧) = 𝑡) → if(𝑧 ∈ (𝐴[,]𝐵), (𝐹𝑧), if(𝑧 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝐵))
327316, 317, 3263eqtr3d 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧 ∈ (𝐵(,)+∞)) ∧ (𝐺𝑧) = 𝑡) → 𝑡 = (𝐹𝐵))
328292, 293, 294, 327syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) ∧ 𝑧 ∈ (𝐵(,)+∞) ∧ (𝐺𝑧) = 𝑡) → 𝑡 = (𝐹𝐵))
329328rexlimdv3a 3216 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) → (∃𝑧 ∈ (𝐵(,)+∞)(𝐺𝑧) = 𝑡𝑡 = (𝐹𝐵)))
330291, 329mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) → 𝑡 = (𝐹𝐵))
331 velsn 4578 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ {(𝐹𝐵)} ↔ 𝑡 = (𝐹𝐵))
332330, 331sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (𝐺 “ (𝐵(,)+∞))) → 𝑡 ∈ {(𝐹𝐵)})
333332ex 413 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑡 ∈ (𝐺 “ (𝐵(,)+∞)) → 𝑡 ∈ {(𝐹𝐵)}))
334333ssrdv 3928 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐺 “ (𝐵(,)+∞)) ⊆ {(𝐹𝐵)})
335334adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝐵(,)+∞)) ⊆ {(𝐹𝐵)})
336 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝐵) ∈ 𝑢)
337336snssd 4743 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) → {(𝐹𝐵)} ⊆ 𝑢)
338335, 337sstrd 3932 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝐵(,)+∞)) ⊆ 𝑢)
339338adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝐵(,)+∞)) ⊆ 𝑢)
340289, 339unssd 4121 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝐺 “ (-∞(,)𝐴)) ∪ (𝐺 “ (𝐵(,)+∞))) ⊆ 𝑢)
341243, 340eqsstrid 3970 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ 𝑢)
342159, 163, 164, 341syl21anc 835 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ 𝑢)
343242, 342unssd 4121 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝐺𝑤) ∪ (𝐺 “ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) ⊆ 𝑢)
344158, 343eqsstrid 3970 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) ⊆ 𝑢)
345 eleq2 2828 . . . . . . . . . . . . . . 15 (𝑣 = (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑦𝑣𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))))
346 imaeq2 5968 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐺𝑣) = (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))))
347346sseq1d 3953 . . . . . . . . . . . . . . 15 (𝑣 = (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ((𝐺𝑣) ⊆ 𝑢 ↔ (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) ⊆ 𝑢))
348345, 347anbi12d 631 . . . . . . . . . . . . . 14 (𝑣 = (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ((𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) ↔ (𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∧ (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) ⊆ 𝑢)))
349348rspcev 3562 . . . . . . . . . . . . 13 (((𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∈ 𝐽 ∧ (𝑦 ∈ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ∧ (𝐺 “ (𝑤 ∪ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
350103, 157, 344, 349syl12anc 834 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
35179a1i 11 . . . . . . . . . . . . . . . 16 (𝑤𝐽𝐽 ∈ Top)
352 iooretop 23938 . . . . . . . . . . . . . . . . . 18 (-∞(,)𝐵) ∈ (topGen‘ran (,))
353352, 1eleqtrri 2839 . . . . . . . . . . . . . . . . 17 (-∞(,)𝐵) ∈ 𝐽
354 inopn 22057 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤𝐽 ∧ (-∞(,)𝐵) ∈ 𝐽) → (𝑤 ∩ (-∞(,)𝐵)) ∈ 𝐽)
35579, 353, 354mp3an13 1451 . . . . . . . . . . . . . . . 16 (𝑤𝐽 → (𝑤 ∩ (-∞(,)𝐵)) ∈ 𝐽)
35696a1i 11 . . . . . . . . . . . . . . . 16 (𝑤𝐽 → (-∞(,)𝐴) ∈ 𝐽)
357 unopn 22061 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ (𝑤 ∩ (-∞(,)𝐵)) ∈ 𝐽 ∧ (-∞(,)𝐴) ∈ 𝐽) → ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∈ 𝐽)
358351, 355, 356, 357syl3anc 1370 . . . . . . . . . . . . . . 15 (𝑤𝐽 → ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∈ 𝐽)
3593583ad2ant2 1133 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∈ 𝐽)
360359ad2antrr 723 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∈ 𝐽)
361 simpll1 1211 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢))
362 simpll3 1213 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
363 simpr 485 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ (𝐹𝐵) ∈ 𝑢)
364 simpll 764 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → (((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))))
365262ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
366 eqimss 3978 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
367109, 366syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
368 difcom 4420 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℝ ∖ (𝐴[,]𝐵)) ⊆ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ (ℝ ∖ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ (𝐴[,]𝐵))
369367, 368sylib 217 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ (𝐴[,]𝐵))
370365, 369syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (ℝ ∖ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ (𝐴[,]𝐵))
371370adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → (ℝ ∖ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) ⊆ (𝐴[,]𝐵))
372 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ ℝ)
373 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → ¬ 𝑦 ∈ (-∞(,)𝐴))
374 elioore 13118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (𝐵(,)+∞) → 𝑦 ∈ ℝ)
375374adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ ℝ)
376 elioo3g 13117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑦 ∈ (𝐵(,)+∞) ↔ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
377376biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑦 ∈ (𝐵(,)+∞) → ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
378377simprld 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 ∈ (𝐵(,)+∞) → 𝐵 < 𝑦)
379378adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝐵 < 𝑦)
3805adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝐵 ∈ ℝ)
381380, 375ltnled 11131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐵 < 𝑦 ↔ ¬ 𝑦𝐵))
382379, 381mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → ¬ 𝑦𝐵)
383382intn3an3d 1480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → ¬ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
384262adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
385 elicc2 13153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
386384, 385syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
387383, 386mtbird 325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → ¬ 𝑦 ∈ (𝐴[,]𝐵))
388387iffalsed 4471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)))
3894adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝐴 ∈ ℝ)
39025adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝐴𝐵)
391389, 380, 375, 390, 379lelttrd 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → 𝐴 < 𝑦)
392389, 375, 391ltnsymd 11133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → ¬ 𝑦 < 𝐴)
393392iffalsed 4471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵)) = (𝐹𝐵))
394388, 393eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) = (𝐹𝐵))
395129adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝐵) ∈ 𝑌)
396394, 395eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))) ∈ 𝑌)
397375, 396, 133syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐺𝑦) = if(𝑦 ∈ (𝐴[,]𝐵), (𝐹𝑦), if(𝑦 < 𝐴, (𝐹𝐴), (𝐹𝐵))))
398397, 394eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐺𝑦) = (𝐹𝐵))
399398eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝐵) = (𝐺𝑦))
400399adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝐵) = (𝐺𝑦))
401 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐵(,)+∞)) → (𝐺𝑦) ∈ 𝑢)
402400, 401eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝐵) ∈ 𝑢)
403402adantllr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝐵) ∈ 𝑢)
404403stoic1a 1775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ 𝑦 ∈ (𝐵(,)+∞))
405404adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → ¬ 𝑦 ∈ (𝐵(,)+∞))
406 ioran 981 . . . . . . . . . . . . . . . . . . . . . . . . 25 (¬ (𝑦 ∈ (-∞(,)𝐴) ∨ 𝑦 ∈ (𝐵(,)+∞)) ↔ (¬ 𝑦 ∈ (-∞(,)𝐴) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)))
407373, 405, 406sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → ¬ (𝑦 ∈ (-∞(,)𝐴) ∨ 𝑦 ∈ (𝐵(,)+∞)))
408 elun 4084 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ (𝑦 ∈ (-∞(,)𝐴) ∨ 𝑦 ∈ (𝐵(,)+∞)))
409407, 408sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → ¬ 𝑦 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
410372, 409eldifd 3899 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ (ℝ ∖ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
411371, 410sseldd 3923 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ (𝐴[,]𝐵))
412411adantllr 716 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ (𝐴[,]𝐵))
413 simp-4l 780 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝜑)
414 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) ∈ 𝑢)
415 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
416 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
417138adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) = (𝐺𝑦))
418 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) ∈ 𝑢)
419417, 418eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ 𝑢)
42017ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐹 Fn (𝐴[,]𝐵))
421420, 143syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
422416, 419, 421mpbir2and 710 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐹𝑢))
423413, 414, 415, 422syl21anc 835 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐹𝑢))
424 simplr 766 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
425423, 424eleqtrd 2842 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
426 elinel1 4130 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)) → 𝑦𝑤)
427425, 426syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝑤)
428364, 412, 427syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦𝑤)
429 simp-4l 780 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → (𝜑𝑦 ∈ ℝ))
430 simp-4r 781 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → (𝐺𝑦) ∈ 𝑢)
431 simplr 766 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → ¬ (𝐹𝐵) ∈ 𝑢)
432 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 = 𝐵) → 𝜑)
433 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 = 𝐵) → 𝑦 = 𝐵)
43434adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
435433, 434eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 = 𝐵) → 𝑦 ∈ (𝐴[,]𝐵))
436432, 435, 137syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 = 𝐵) → (𝐺𝑦) = (𝐹𝑦))
437433fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 = 𝐵) → (𝐹𝑦) = (𝐹𝐵))
438436, 437eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 = 𝐵) → (𝐺𝑦) = (𝐹𝐵))
439438ad4ant14 749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ 𝑦 = 𝐵) → (𝐺𝑦) = (𝐹𝐵))
440 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → 𝜑)
44124adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ ℝ) → 𝐵 ∈ ℝ*)
442 pnfxr 11038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 +∞ ∈ ℝ*
443442a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ ℝ) → +∞ ∈ ℝ*)
444 rexr 11030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
445444adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
446441, 443, 4453jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ ℝ) → (𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*))
447446ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*))
448 mnflt 12868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ ℝ → -∞ < 𝑦)
449448ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → -∞ < 𝑦)
450 mnfxr 11041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 -∞ ∈ ℝ*
451450a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑦 ∈ ℝ) → -∞ ∈ ℝ*)
452451, 441, 4453jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑦 ∈ ℝ) → (-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*))
453 elioo3g 13117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 ∈ (-∞(,)𝐵) ↔ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐵)))
454453notbii 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 𝑦 ∈ (-∞(,)𝐵) ↔ ¬ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐵)))
455454biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 𝑦 ∈ (-∞(,)𝐵) → ¬ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐵)))
456455adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → ¬ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐵)))
457 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → ¬ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐵))) ↔ ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ (-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*)) → ¬ (-∞ < 𝑦𝑦 < 𝐵)))
458456, 457mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ (-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*)) → ¬ (-∞ < 𝑦𝑦 < 𝐵))
459452, 458mpidan 686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → ¬ (-∞ < 𝑦𝑦 < 𝐵))
460 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → ¬ (-∞ < 𝑦𝑦 < 𝐵)) ↔ ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ -∞ < 𝑦) → ¬ 𝑦 < 𝐵))
461459, 460mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ -∞ < 𝑦) → ¬ 𝑦 < 𝐵)
462449, 461mpdan 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → ¬ 𝑦 < 𝐵)
463462anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (¬ 𝑦 < 𝐵 ∧ ¬ 𝑦 = 𝐵))
464 pm4.56 986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((¬ 𝑦 < 𝐵 ∧ ¬ 𝑦 = 𝐵) ↔ ¬ (𝑦 < 𝐵𝑦 = 𝐵))
465463, 464sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → ¬ (𝑦 < 𝐵𝑦 = 𝐵))
466 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
4675adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑦 ∈ ℝ) → 𝐵 ∈ ℝ)
468466, 467jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑦 ∈ ℝ) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ))
469468ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ))
470 leloe 11070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦𝐵 ↔ (𝑦 < 𝐵𝑦 = 𝐵)))
471469, 470syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝑦𝐵 ↔ (𝑦 < 𝐵𝑦 = 𝐵)))
472465, 471mtbird 325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → ¬ 𝑦𝐵)
4735anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑦 ∈ ℝ) → (𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ))
474473ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ))
475 ltnle 11063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐵 < 𝑦 ↔ ¬ 𝑦𝐵))
476474, 475syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝐵 < 𝑦 ↔ ¬ 𝑦𝐵))
477472, 476mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → 𝐵 < 𝑦)
478 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → 𝑦 ∈ ℝ)
479478ltpnfd 12866 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → 𝑦 < +∞)
480477, 479jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝐵 < 𝑦𝑦 < +∞))
481447, 480, 376sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → 𝑦 ∈ (𝐵(,)+∞))
482440, 481, 398syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) ∧ ¬ 𝑦 = 𝐵) → (𝐺𝑦) = (𝐹𝐵))
483439, 482pm2.61dan 810 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → (𝐺𝑦) = (𝐹𝐵))
484483eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → (𝐹𝐵) = (𝐺𝑦))
485484adantlr 712 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → (𝐹𝐵) = (𝐺𝑦))
486 simplr 766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → (𝐺𝑦) ∈ 𝑢)
487485, 486eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐵)) → (𝐹𝐵) ∈ 𝑢)
488487stoic1a 1775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ ¬ 𝑦 ∈ (-∞(,)𝐵))
489488notnotrd 133 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (-∞(,)𝐵))
490429, 430, 431, 489syl21anc 835 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ (-∞(,)𝐵))
491428, 490elind 4129 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (-∞(,)𝐴)) → 𝑦 ∈ (𝑤 ∩ (-∞(,)𝐵)))
492491ex 413 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (¬ 𝑦 ∈ (-∞(,)𝐴) → 𝑦 ∈ (𝑤 ∩ (-∞(,)𝐵))))
493492orrd 860 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (-∞(,)𝐴) ∨ 𝑦 ∈ (𝑤 ∩ (-∞(,)𝐵))))
494493orcomd 868 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∨ 𝑦 ∈ (-∞(,)𝐴)))
495 elun 4084 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ↔ (𝑦 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∨ 𝑦 ∈ (-∞(,)𝐴)))
496494, 495sylibr 233 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)))
497361, 362, 363, 496syl21anc 835 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)))
498104simpld 495 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → 𝜑)
499498adantr 481 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝜑)
500 simpll2 1212 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑤𝐽)
5013, 500, 160sylancr 587 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑤 ⊆ ℝ)
502499, 501jca 512 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝜑𝑤 ⊆ ℝ))
503 simplr 766 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐹𝐴) ∈ 𝑢)
50465ffnd 6610 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 Fn ℝ)
505504ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → 𝐺 Fn ℝ)
506 ssinss1 4172 . . . . . . . . . . . . . . . . 17 (𝑤 ⊆ ℝ → (𝑤 ∩ (-∞(,)𝐵)) ⊆ ℝ)
507506ad3antlr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝑤 ∩ (-∞(,)𝐵)) ⊆ ℝ)
508 ioossre 13149 . . . . . . . . . . . . . . . . 17 (-∞(,)𝐴) ⊆ ℝ
509508a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (-∞(,)𝐴) ⊆ ℝ)
510 unima 6852 . . . . . . . . . . . . . . . 16 ((𝐺 Fn ℝ ∧ (𝑤 ∩ (-∞(,)𝐵)) ⊆ ℝ ∧ (-∞(,)𝐴) ⊆ ℝ) → (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) = ((𝐺 “ (𝑤 ∩ (-∞(,)𝐵))) ∪ (𝐺 “ (-∞(,)𝐴))))
511505, 507, 509, 510syl3anc 1370 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) = ((𝐺 “ (𝑤 ∩ (-∞(,)𝐵))) ∪ (𝐺 “ (-∞(,)𝐴))))
512165a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) → Fun 𝐺)
513 fvelima 6844 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐺𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) → ∃𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))(𝐺𝑧) = 𝑦)
514512, 513sylancom 588 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) → ∃𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))(𝐺𝑧) = 𝑦)
5151713ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ (𝐺𝑧) = 𝑦) → 𝑦 = (𝐺𝑧))
516 simp-5l 782 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ 𝑧 ∈ (-∞(,)𝐴)) → 𝜑)
517 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ 𝑧 ∈ (-∞(,)𝐴)) → (𝐹𝐴) ∈ 𝑢)
518 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (-∞(,)𝐴))
519273, 267, 2693eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) = (𝐹𝐴))
5205193adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) = (𝐹𝐴))
521 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢𝑧 ∈ (-∞(,)𝐴)) → (𝐹𝐴) ∈ 𝑢)
522520, 521eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝐹𝐴) ∈ 𝑢𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) ∈ 𝑢)
523516, 517, 518, 522syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ 𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) ∈ 𝑢)
524 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))))
525 simp-5l 782 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝜑)
526 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)))
527 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ 𝑧 ∈ (-∞(,)𝐴))
528 elinel1 4130 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) → 𝑧𝑤)
5295283ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧𝑤)
530 elinel2 4131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) → 𝑧 ∈ (-∞(,)𝐵))
531 elioore 13118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∈ (-∞(,)𝐵) → 𝑧 ∈ ℝ)
532530, 531syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) → 𝑧 ∈ ℝ)
5335323ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ ℝ)
534233ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝐴 ∈ ℝ*)
535533rexrd 11034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ ℝ*)
536 mnflt 12868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ ℝ → -∞ < 𝑧)
537533, 536syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → -∞ < 𝑧)
538450a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → -∞ ∈ ℝ*)
539538, 534, 5353jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*))
540 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ 𝑧 ∈ (-∞(,)𝐴))
541540, 254sylnib 328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐴)))
542 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐴))) ↔ (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) ∧ (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*)) → ¬ (-∞ < 𝑧𝑧 < 𝐴)))
543541, 542mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) ∧ (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*)) → ¬ (-∞ < 𝑧𝑧 < 𝐴))
544539, 543mpdan 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ (-∞ < 𝑧𝑧 < 𝐴))
545 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ (-∞ < 𝑧𝑧 < 𝐴)) ↔ (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) ∧ -∞ < 𝑧) → ¬ 𝑧 < 𝐴))
546544, 545mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) ∧ -∞ < 𝑧) → ¬ 𝑧 < 𝐴)
547537, 546mpdan 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → ¬ 𝑧 < 𝐴)
548534, 535, 547xrnltled 11052 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝐴𝑧)
549 simp1 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝜑)
5505303ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (-∞(,)𝐵))
551531adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐵)) → 𝑧 ∈ ℝ)
5525adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐵)) → 𝐵 ∈ ℝ)
553 elioo3g 13117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (-∞(,)𝐵) ↔ ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐵)))
554553biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ (-∞(,)𝐵) → ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < 𝐵)))
555554simprrd 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (-∞(,)𝐵) → 𝑧 < 𝐵)
556555adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (-∞(,)𝐵)) → 𝑧 < 𝐵)
557551, 552, 556ltled 11132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (-∞(,)𝐵)) → 𝑧𝐵)
558549, 550, 557syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧𝐵)
5592623ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
560559, 264syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
561533, 548, 558, 560mpbir3and 1341 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (𝐴[,]𝐵))
562529, 561elind 4129 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
563525, 526, 527, 562syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
564 elinel2 4131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
565564anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝜑𝑧 ∈ (𝐴[,]𝐵)))
566565adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝜑𝑧 ∈ (𝐴[,]𝐵)))
567566, 186syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺𝑧) = (𝐹𝑧))
56817ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → 𝐹 Fn (𝐴[,]𝐵))
569 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
570195adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
571569, 570eleqtrd 2842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → 𝑧 ∈ (𝐹𝑢))
572571adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → 𝑧 ∈ (𝐹𝑢))
573201simplbda 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐹𝑢)) → (𝐹𝑧) ∈ 𝑢)
574568, 572, 573syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝐹𝑧) ∈ 𝑢)
575567, 574eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺𝑧) ∈ 𝑢)
576575adantllr 716 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺𝑧) ∈ 𝑢)
577524, 563, 576syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) ∧ ¬ 𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) ∈ 𝑢)
578523, 577pm2.61dan 810 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))) → (𝐺𝑧) ∈ 𝑢)
5795783adant3 1131 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ (𝐺𝑧) = 𝑦) → (𝐺𝑧) ∈ 𝑢)
580515, 579eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ (𝐺𝑧) = 𝑦) → 𝑦𝑢)
5815803adant1r 1176 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) ∧ 𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵)) ∧ (𝐺𝑧) = 𝑦) → 𝑦𝑢)
582581rexlimdv3a 3216 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) → (∃𝑧 ∈ (𝑤 ∩ (-∞(,)𝐵))(𝐺𝑧) = 𝑦𝑦𝑢))
583514, 582mpd 15 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵)))) → 𝑦𝑢)
584583ex 413 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝑦 ∈ (𝐺 “ (𝑤 ∩ (-∞(,)𝐵))) → 𝑦𝑢))
585584ssrdv 3928 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ (𝑤 ∩ (-∞(,)𝐵))) ⊆ 𝑢)
586288ad4ant14 749 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ (-∞(,)𝐴)) ⊆ 𝑢)
587585, 586unssd 4121 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → ((𝐺 “ (𝑤 ∩ (-∞(,)𝐵))) ∪ (𝐺 “ (-∞(,)𝐴))) ⊆ 𝑢)
588511, 587eqsstrd 3960 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ⊆ ℝ) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) ⊆ 𝑢)
589502, 362, 503, 588syl21anc 835 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) ⊆ 𝑢)
590 eleq2 2828 . . . . . . . . . . . . . . 15 (𝑣 = ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) → (𝑦𝑣𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))))
591 imaeq2 5968 . . . . . . . . . . . . . . . 16 (𝑣 = ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) → (𝐺𝑣) = (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))))
592591sseq1d 3953 . . . . . . . . . . . . . . 15 (𝑣 = ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) → ((𝐺𝑣) ⊆ 𝑢 ↔ (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) ⊆ 𝑢))
593590, 592anbi12d 631 . . . . . . . . . . . . . 14 (𝑣 = ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) → ((𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) ↔ (𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∧ (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) ⊆ 𝑢)))
594593rspcev 3562 . . . . . . . . . . . . 13 ((((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∈ 𝐽 ∧ (𝑦 ∈ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴)) ∧ (𝐺 “ ((𝑤 ∩ (-∞(,)𝐵)) ∪ (-∞(,)𝐴))) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
595360, 497, 589, 594syl12anc 834 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
596350, 595pm2.61dan 810 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐴) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
597 simpll2 1212 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑤𝐽)
598 iooretop 23938 . . . . . . . . . . . . . . . . 17 (𝐴(,)+∞) ∈ (topGen‘ran (,))
599598, 1eleqtrri 2839 . . . . . . . . . . . . . . . 16 (𝐴(,)+∞) ∈ 𝐽
600 inopn 22057 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝑤𝐽 ∧ (𝐴(,)+∞) ∈ 𝐽) → (𝑤 ∩ (𝐴(,)+∞)) ∈ 𝐽)
60179, 599, 600mp3an13 1451 . . . . . . . . . . . . . . 15 (𝑤𝐽 → (𝑤 ∩ (𝐴(,)+∞)) ∈ 𝐽)
60298a1i 11 . . . . . . . . . . . . . . 15 (𝑤𝐽 → (𝐵(,)+∞) ∈ 𝐽)
603 unopn 22061 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (𝑤 ∩ (𝐴(,)+∞)) ∈ 𝐽 ∧ (𝐵(,)+∞) ∈ 𝐽) → ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∈ 𝐽)
604351, 601, 602, 603syl3anc 1370 . . . . . . . . . . . . . 14 (𝑤𝐽 → ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∈ 𝐽)
605597, 604syl 17 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∈ 𝐽)
606 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢))
607606simpld 495 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝜑𝑦 ∈ ℝ))
608607simpld 495 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝜑)
609 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝐺𝑦) ∈ 𝑢)
610 simp-5r 783 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ ℝ)
611 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ¬ (𝐹𝐴) ∈ 𝑢)
612 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → 𝜑)
61323adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℝ*)
614451, 613, 4453jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑦 ∈ ℝ) → (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑦 ∈ ℝ*))
615614adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑦 ∈ ℝ*))
616448anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∈ ℝ ∧ 𝑦 < 𝐴) → (-∞ < 𝑦𝑦 < 𝐴))
617616adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → (-∞ < 𝑦𝑦 < 𝐴))
618 elioo3g 13117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (-∞(,)𝐴) ↔ ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ < 𝑦𝑦 < 𝐴)))
619615, 617, 618sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → 𝑦 ∈ (-∞(,)𝐴))
620 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = 𝑦 → (𝑧 ∈ (-∞(,)𝐴) ↔ 𝑦 ∈ (-∞(,)𝐴)))
621620anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑦 → ((𝜑𝑧 ∈ (-∞(,)𝐴)) ↔ (𝜑𝑦 ∈ (-∞(,)𝐴))))
622 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
623622eqeq1d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑦 → ((𝐺𝑧) = (𝐹𝐴) ↔ (𝐺𝑦) = (𝐹𝐴)))
624621, 623imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑦 → (((𝜑𝑧 ∈ (-∞(,)𝐴)) → (𝐺𝑧) = (𝐹𝐴)) ↔ ((𝜑𝑦 ∈ (-∞(,)𝐴)) → (𝐺𝑦) = (𝐹𝐴))))
625624, 519chvarvv 2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (-∞(,)𝐴)) → (𝐺𝑦) = (𝐹𝐴))
626612, 619, 625syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → (𝐺𝑦) = (𝐹𝐴))
627626eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 𝐴) → (𝐹𝐴) = (𝐺𝑦))
628627ad4ant14 749 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 < 𝐴) → (𝐹𝐴) = (𝐺𝑦))
629 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 < 𝐴) → (𝐺𝑦) ∈ 𝑢)
630628, 629eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 < 𝐴) → (𝐹𝐴) ∈ 𝑢)
631 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ 𝑦 < 𝐴) → ¬ (𝐹𝐴) ∈ 𝑢)
632630, 631pm2.65da 814 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → ¬ 𝑦 < 𝐴)
6334anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ))
634633ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → (𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ))
635 lenlt 11062 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴𝑦 ↔ ¬ 𝑦 < 𝐴))
636634, 635syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → (𝐴𝑦 ↔ ¬ 𝑦 < 𝐴))
637632, 636mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → 𝐴𝑦)
638606, 611, 637syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝐴𝑦)
639 ltpnf 12865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℝ → 𝑦 < +∞)
640639ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 < +∞)
641446adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*))
642376notbii 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑦 ∈ (𝐵(,)+∞) ↔ ¬ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
643642biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 ∈ (𝐵(,)+∞) → ¬ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
644643adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ¬ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
645 imnan 400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) → ¬ (𝐵 < 𝑦𝑦 < +∞)) ↔ ¬ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 < 𝑦𝑦 < +∞)))
646644, 645sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) → ¬ (𝐵 < 𝑦𝑦 < +∞)))
647641, 646mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ¬ (𝐵 < 𝑦𝑦 < +∞))
648 ancom 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 < 𝑦𝑦 < +∞) ↔ (𝑦 < +∞ ∧ 𝐵 < 𝑦))
649647, 648sylnib 328 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ¬ (𝑦 < +∞ ∧ 𝐵 < 𝑦))
650 imnan 400 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 < +∞ → ¬ 𝐵 < 𝑦) ↔ ¬ (𝑦 < +∞ ∧ 𝐵 < 𝑦))
651649, 650sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝑦 < +∞ → ¬ 𝐵 < 𝑦))
652640, 651mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → ¬ 𝐵 < 𝑦)
653468adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ))
654 lenlt 11062 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦𝐵 ↔ ¬ 𝐵 < 𝑦))
655653, 654syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝑦𝐵 ↔ ¬ 𝐵 < 𝑦))
656652, 655mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦𝐵)
657607, 656sylancom 588 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦𝐵)
658262ad5antr 731 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
659658, 385syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
660610, 638, 657, 659mpbir3and 1341 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝐴[,]𝐵))
661608, 609, 660, 422syl21anc 835 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝐹𝑢))
662 simpllr 773 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
663661, 662eleqtrd 2842 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
664663, 426syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦𝑤)
665 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝐴 → (𝐺𝑦) = (𝐺𝐴))
66627ancli 549 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝜑𝐴 ∈ (𝐴[,]𝐵)))
667 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝐴 → (𝑦 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵)))
668667anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = 𝐴 → ((𝜑𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑𝐴 ∈ (𝐴[,]𝐵))))
669 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
670665, 669eqeq12d 2755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = 𝐴 → ((𝐺𝑦) = (𝐹𝑦) ↔ (𝐺𝐴) = (𝐹𝐴)))
671668, 670imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = 𝐴 → (((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐺𝑦) = (𝐹𝑦)) ↔ ((𝜑𝐴 ∈ (𝐴[,]𝐵)) → (𝐺𝐴) = (𝐹𝐴))))
672671, 137vtoclg 3506 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∈ ℝ → ((𝜑𝐴 ∈ (𝐴[,]𝐵)) → (𝐺𝐴) = (𝐹𝐴)))
6734, 666, 672sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐺𝐴) = (𝐹𝐴))
674665, 673sylan9eqr 2801 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 = 𝐴) → (𝐺𝑦) = (𝐹𝐴))
675674ad4ant14 749 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ 𝑦 = 𝐴) → (𝐺𝑦) = (𝐹𝐴))
676 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝜑)
677614ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → (-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑦 ∈ ℝ*))
678448ad3antlr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → -∞ < 𝑦)
679 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ∈ ℝ)
680676, 4syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝐴 ∈ ℝ)
681445adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → 𝑦 ∈ ℝ*)
68223ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → 𝐴 ∈ ℝ*)
683639ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → 𝑦 < +∞)
684 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ 𝑦 ∈ (𝐴(,)+∞))
685442a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → +∞ ∈ ℝ*)
686682, 685, 6813jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*))
687 elioo3g 13117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ (𝐴(,)+∞) ↔ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < +∞)))
688687notbii 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑦 ∈ (𝐴(,)+∞) ↔ ¬ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < +∞)))
689688biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑦 ∈ (𝐴(,)+∞) → ¬ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < +∞)))
690 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((¬ 𝑦 ∈ (𝐴(,)+∞) → ¬ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < +∞))) ↔ ((¬ 𝑦 ∈ (𝐴(,)+∞) ∧ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*)) → ¬ (𝐴 < 𝑦𝑦 < +∞)))
691689, 690mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((¬ 𝑦 ∈ (𝐴(,)+∞) ∧ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*)) → ¬ (𝐴 < 𝑦𝑦 < +∞))
692684, 686, 691syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ (𝐴 < 𝑦𝑦 < +∞))
693 ancom 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐴 < 𝑦𝑦 < +∞) ↔ (𝑦 < +∞ ∧ 𝐴 < 𝑦))
694692, 693sylnib 328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ (𝑦 < +∞ ∧ 𝐴 < 𝑦))
695 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ (𝑦 < +∞ ∧ 𝐴 < 𝑦)) ↔ ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ 𝑦 < +∞) → ¬ 𝐴 < 𝑦))
696694, 695mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ 𝑦 < +∞) → ¬ 𝐴 < 𝑦)
697683, 696mpdan 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ 𝐴 < 𝑦)
698681, 682, 697xrnltled 11052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → 𝑦𝐴)
699698adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝑦𝐴)
700 neqne 2952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 = 𝐴𝑦𝐴)
701700necomd 3000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑦 = 𝐴𝐴𝑦)
702701adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝐴𝑦)
703679, 680, 699, 702leneltd 11138 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝑦 < 𝐴)
704678, 703jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → (-∞ < 𝑦𝑦 < 𝐴))
705677, 704, 618sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ∈ (-∞(,)𝐴))
706676, 705, 625syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑦 = 𝐴) → (𝐺𝑦) = (𝐹𝐴))
707675, 706pm2.61dan 810 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐺𝑦) = (𝐹𝐴))
708707eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐹𝐴) = (𝐺𝑦))
709708ad4ant14 749 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐹𝐴) = (𝐺𝑦))
710 simpllr 773 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐺𝑦) ∈ 𝑢)
711709, 710eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → (𝐹𝐴) ∈ 𝑢)
712 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐴(,)+∞)) → ¬ (𝐹𝐴) ∈ 𝑢)
713711, 712condan 815 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → 𝑦 ∈ (𝐴(,)+∞))
714606, 611, 713syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝐴(,)+∞))
715664, 714elind 4129 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)))
716715adantlr 712 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)))
717 pm5.6 999 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) ∧ ¬ 𝑦 ∈ (𝐵(,)+∞)) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ↔ ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝐵(,)+∞) ∨ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)))))
718716, 717mpbi 229 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝐵(,)+∞) ∨ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))))
719718orcomd 868 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) ∨ 𝑦 ∈ (𝐵(,)+∞)))
720 elun 4084 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ↔ (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) ∨ 𝑦 ∈ (𝐵(,)+∞)))
721719, 720sylibr 233 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)))
7227213adantll2 42593 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)))
723 simp1ll 1235 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → 𝜑)
724723ad2antrr 723 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → 𝜑)
725 simpll3 1213 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
726 simpr 485 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐹𝐵) ∈ 𝑢)
727504ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → 𝐺 Fn ℝ)
728 ioossre 13149 . . . . . . . . . . . . . . . . . . 19 (𝐴(,)+∞) ⊆ ℝ
729728olci 863 . . . . . . . . . . . . . . . . . 18 (𝑤 ⊆ ℝ ∨ (𝐴(,)+∞) ⊆ ℝ)
730 inss 4173 . . . . . . . . . . . . . . . . . 18 ((𝑤 ⊆ ℝ ∨ (𝐴(,)+∞) ⊆ ℝ) → (𝑤 ∩ (𝐴(,)+∞)) ⊆ ℝ)
731729, 730ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑤 ∩ (𝐴(,)+∞)) ⊆ ℝ
732731a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝑤 ∩ (𝐴(,)+∞)) ⊆ ℝ)
733 ioossre 13149 . . . . . . . . . . . . . . . . 17 (𝐵(,)+∞) ⊆ ℝ
734733a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐵(,)+∞) ⊆ ℝ)
735 unima 6852 . . . . . . . . . . . . . . . 16 ((𝐺 Fn ℝ ∧ (𝑤 ∩ (𝐴(,)+∞)) ⊆ ℝ ∧ (𝐵(,)+∞) ⊆ ℝ) → (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) = ((𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ∪ (𝐺 “ (𝐵(,)+∞))))
736727, 732, 734, 735syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) = ((𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ∪ (𝐺 “ (𝐵(,)+∞))))
737 simpll 764 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → 𝜑)
738731sseli 3918 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) → 𝑦 ∈ ℝ)
739738ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → 𝑦 ∈ ℝ)
740737, 739, 446syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*))
741 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) ∧ 𝐵 < 𝑦) → 𝐵 < 𝑦)
742738ltpnfd 12866 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) → 𝑦 < +∞)
743742adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) ∧ 𝐵 < 𝑦) → 𝑦 < +∞)
744741, 743jca 512 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) ∧ 𝐵 < 𝑦) → (𝐵 < 𝑦𝑦 < +∞))
745744adantll 711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐵 < 𝑦𝑦 < +∞))
746740, 745, 376sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → 𝑦 ∈ (𝐵(,)+∞))
747737, 746, 398syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐺𝑦) = (𝐹𝐵))
748747adantllr 716 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐺𝑦) = (𝐹𝐵))
749 simpllr 773 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐹𝐵) ∈ 𝑢)
750748, 749eqeltrd 2840 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐺𝑦) ∈ 𝑢)
751750adantl3r 747 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ 𝐵 < 𝑦) → (𝐺𝑦) ∈ 𝑢)
752 simp-4l 780 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝜑)
753 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)))
754 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → ¬ 𝐵 < 𝑦)
755 simpll 764 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝜑)
756738adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) → 𝑦 ∈ ℝ)
757756adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦 ∈ ℝ)
7584adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) → 𝐴 ∈ ℝ)
759 elinel2 4131 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) → 𝑦 ∈ (𝐴(,)+∞))
760687biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (𝐴(,)+∞) → ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < +∞)))
761760simprld 769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝐴(,)+∞) → 𝐴 < 𝑦)
762759, 761syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) → 𝐴 < 𝑦)
763762adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) → 𝐴 < 𝑦)
764758, 756, 763ltled 11132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) → 𝐴𝑦)
765764adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝐴𝑦)
766 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → ¬ 𝐵 < 𝑦)
767755, 757, 468syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ))
768767, 654syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦𝐵 ↔ ¬ 𝐵 < 𝑦))
769766, 768mpbird 256 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦𝐵)
770262ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
771770, 385syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
772757, 765, 769, 771mpbir3and 1341 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦 ∈ (𝐴[,]𝐵))
773755, 772, 137syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐺𝑦) = (𝐹𝑦))
774752, 753, 754, 773syl21anc 835 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐺𝑦) = (𝐹𝑦))
775 elinel1 4130 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞)) → 𝑦𝑤)
776775ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦𝑤)
777776, 772jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦𝑤𝑦 ∈ (𝐴[,]𝐵)))
778777adantllr 716 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦𝑤𝑦 ∈ (𝐴[,]𝐵)))
779778, 149sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
780195ad3antlr 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
781779, 780eleqtrd 2842 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝑦 ∈ (𝐹𝑢))
78217ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → 𝐹 Fn (𝐴[,]𝐵))
783782, 143syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
784781, 783mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢))
785784simprd 496 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐹𝑦) ∈ 𝑢)
786785adantllr 716 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐹𝑦) ∈ 𝑢)
787774, 786eqeltrd 2840 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) ∧ ¬ 𝐵 < 𝑦) → (𝐺𝑦) ∈ 𝑢)
788751, 787pm2.61dan 810 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))) → (𝐺𝑦) ∈ 𝑢)
789788ralrimiva 3104 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → ∀𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))(𝐺𝑦) ∈ 𝑢)
790504fndmd 6547 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐺 = ℝ)
791731, 790sseqtrrid 3975 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑤 ∩ (𝐴(,)+∞)) ⊆ dom 𝐺)
792166, 791jca 512 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Fun 𝐺 ∧ (𝑤 ∩ (𝐴(,)+∞)) ⊆ dom 𝐺))
793792ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (Fun 𝐺 ∧ (𝑤 ∩ (𝐴(,)+∞)) ⊆ dom 𝐺))
794 funimass4 6843 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐺 ∧ (𝑤 ∩ (𝐴(,)+∞)) ⊆ dom 𝐺) → ((𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ⊆ 𝑢 ↔ ∀𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))(𝐺𝑦) ∈ 𝑢))
795793, 794syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ⊆ 𝑢 ↔ ∀𝑦 ∈ (𝑤 ∩ (𝐴(,)+∞))(𝐺𝑦) ∈ 𝑢))
796789, 795mpbird 256 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ⊆ 𝑢)
797338adantlr 712 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝐵(,)+∞)) ⊆ 𝑢)
798796, 797unssd 4121 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → ((𝐺 “ (𝑤 ∩ (𝐴(,)+∞))) ∪ (𝐺 “ (𝐵(,)+∞))) ⊆ 𝑢)
799736, 798eqsstrd 3960 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) ⊆ 𝑢)
800724, 725, 726, 799syl21anc 835 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) ⊆ 𝑢)
801 eleq2 2828 . . . . . . . . . . . . . . 15 (𝑣 = ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) → (𝑦𝑣𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))))
802 imaeq2 5968 . . . . . . . . . . . . . . . 16 (𝑣 = ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) → (𝐺𝑣) = (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))))
803802sseq1d 3953 . . . . . . . . . . . . . . 15 (𝑣 = ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) → ((𝐺𝑣) ⊆ 𝑢 ↔ (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) ⊆ 𝑢))
804801, 803anbi12d 631 . . . . . . . . . . . . . 14 (𝑣 = ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) → ((𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) ↔ (𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∧ (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) ⊆ 𝑢)))
805804rspcev 3562 . . . . . . . . . . . . 13 ((((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∈ 𝐽 ∧ (𝑦 ∈ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞)) ∧ (𝐺 “ ((𝑤 ∩ (𝐴(,)+∞)) ∪ (𝐵(,)+∞))) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
806605, 722, 800, 805syl12anc 834 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ (𝐹𝐵) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
807 simpll2 1212 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑤𝐽)
808 iooretop 23938 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
809808, 1eleqtrri 2839 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ∈ 𝐽
810 inopn 22057 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑤𝐽 ∧ (𝐴(,)𝐵) ∈ 𝐽) → (𝑤 ∩ (𝐴(,)𝐵)) ∈ 𝐽)
81179, 809, 810mp3an13 1451 . . . . . . . . . . . . . 14 (𝑤𝐽 → (𝑤 ∩ (𝐴(,)𝐵)) ∈ 𝐽)
812807, 811syl 17 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝑤 ∩ (𝐴(,)𝐵)) ∈ 𝐽)
813 simp-4r 781 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ℝ)
814637adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝐴𝑦)
815 simpll 764 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝜑𝑦 ∈ ℝ))
816815, 404, 656syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦𝐵)
817816adantlr 712 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦𝐵)
818 simp-4l 780 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝜑)
819818, 262syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
820819, 385syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
821813, 814, 817, 820mpbir3and 1341 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝐴[,]𝐵))
822821adantllr 716 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝐴[,]𝐵))
823818, 821, 137syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐺𝑦) = (𝐹𝑦))
824823adantllr 716 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐺𝑦) = (𝐹𝑦))
825 simp-4r 781 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐺𝑦) ∈ 𝑢)
826824, 825eqeltrrd 2841 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐹𝑦) ∈ 𝑢)
827 simp-5l 782 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝜑)
828827, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝐹 Fn (𝐴[,]𝐵))
829828, 143syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
830822, 826, 829mpbir2and 710 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝐹𝑢))
831 simpllr 773 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)))
832830, 831eleqtrd 2842 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
833832, 426syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦𝑤)
834 simp-5r 783 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ ℝ)
835827, 834, 822jca31 515 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)))
836 simplr 766 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ (𝐹𝐴) ∈ 𝑢)
837826, 836jca 512 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ((𝐹𝑦) ∈ 𝑢 ∧ ¬ (𝐹𝐴) ∈ 𝑢))
838 nelneq 2864 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) ∈ 𝑢 ∧ ¬ (𝐹𝐴) ∈ 𝑢) → ¬ (𝐹𝑦) = (𝐹𝐴))
839669necon3bi 2971 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑦) = (𝐹𝐴) → 𝑦𝐴)
840837, 838, 8393syl 18 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦𝐴)
841 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ (𝐹𝐵) ∈ 𝑢)
842826, 841jca 512 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ((𝐹𝑦) ∈ 𝑢 ∧ ¬ (𝐹𝐵) ∈ 𝑢))
843 nelneq 2864 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) ∈ 𝑢 ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ¬ (𝐹𝑦) = (𝐹𝐵))
844 fveq2 6783 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
845844necon3bi 2971 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑦) = (𝐹𝐵) → 𝑦𝐵)
846842, 843, 8453syl 18 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦𝐵)
847613ad3antrrr 727 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝐴 ∈ ℝ*)
848441ad3antrrr 727 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝐵 ∈ ℝ*)
849444ad4antlr 730 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ*)
850847, 848, 8493jca 1127 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*))
851 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) → 𝑦𝐴)
8524ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
853 simplr 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
854262adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
855854, 385syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
856135, 855mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
857856simp2d 1142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
858857adantlr 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
859852, 853, 8583jca 1127 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴𝑦))
860859adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) → (𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴𝑦))
861 leltne 11073 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴𝑦) → (𝐴 < 𝑦𝑦𝐴))
862860, 861syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) → (𝐴 < 𝑦𝑦𝐴))
863851, 862mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) → 𝐴 < 𝑦)
864863adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝐴 < 𝑦)
865 necom 2998 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝐵𝑦)
866865biimpi 215 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵𝐵𝑦)
867866adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐵) → 𝐵𝑦)
8685ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
869856simp3d 1143 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
870869adantlr 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
871853, 868, 8703jca 1127 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦𝐵))
872871adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐵) → (𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦𝐵))
873 leltne 11073 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦𝐵) → (𝑦 < 𝐵𝐵𝑦))
874872, 873syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐵) → (𝑦 < 𝐵𝐵𝑦))
875867, 874mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐵) → 𝑦 < 𝐵)
876875adantlr 712 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 < 𝐵)
877864, 876jca 512 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (𝐴 < 𝑦𝑦 < 𝐵))
878 elioo3g 13117 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐴 < 𝑦𝑦 < 𝐵)))
879850, 877, 878sylanbrc 583 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ (𝐴(,)𝐵))
880835, 840, 846, 879syl21anc 835 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝐴(,)𝐵))
881833, 880elind 4129 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)))
8828813adantll2 42593 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)))
883165a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → Fun 𝐺)
884 fvelima 6844 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐺𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → ∃𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))(𝐺𝑦) = 𝑡)
885883, 884sylancom 588 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → ∃𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))(𝐺𝑦) = 𝑡)
886 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → (𝐺𝑦) = 𝑡)
887 simp1l 1196 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → 𝜑)
888 inss2 4164 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∩ (𝐴(,)𝐵)) ⊆ (𝐴(,)𝐵)
889 ioossicc 13174 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
890888, 889sstri 3931 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∩ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵)
891890sseli 3918 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
8928913ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → 𝑦 ∈ (𝐴[,]𝐵))
893887, 892, 137syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → (𝐺𝑦) = (𝐹𝑦))
894 sslin 4169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (𝑤 ∩ (𝐴(,)𝐵)) ⊆ (𝑤 ∩ (𝐴[,]𝐵)))
895889, 894ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∩ (𝐴(,)𝐵)) ⊆ (𝑤 ∩ (𝐴[,]𝐵))
896895sseli 3918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
897896adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → 𝑦 ∈ (𝑤 ∩ (𝐴[,]𝐵)))
898195adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → (𝑤 ∩ (𝐴[,]𝐵)) = (𝐹𝑢))
899897, 898eleqtrd 2842 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐹𝑢))
900899adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐹𝑢))
90117ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → 𝐹 Fn (𝐴[,]𝐵))
902901, 143syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → (𝑦 ∈ (𝐹𝑢) ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢)))
903900, 902mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ∈ 𝑢))
904903simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))) → (𝐹𝑦) ∈ 𝑢)
9059043adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → (𝐹𝑦) ∈ 𝑢)
906893, 905eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → (𝐺𝑦) ∈ 𝑢)
907886, 906eqeltrrd 2841 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺𝑦) = 𝑡) → 𝑡𝑢)
9089073exp 1118 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) → ((𝐺𝑦) = 𝑡𝑡𝑢)))
909908adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) → ((𝐺𝑦) = 𝑡𝑡𝑢)))
910909rexlimdv 3213 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → (∃𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))(𝐺𝑦) = 𝑡𝑡𝑢))
911885, 910mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))) → 𝑡𝑢)
912911ralrimiva 3104 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → ∀𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))𝑡𝑢)
913 dfss3 3910 . . . . . . . . . . . . . . . . 17 ((𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢 ↔ ∀𝑡 ∈ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵)))𝑡𝑢)
914912, 913sylibr 233 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)
915914ad4ant14 749 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)
9169153adant2 1130 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)
917916ad2antrr 723 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)
918 eleq2 2828 . . . . . . . . . . . . . . 15 (𝑣 = (𝑤 ∩ (𝐴(,)𝐵)) → (𝑦𝑣𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵))))
919 imaeq2 5968 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑤 ∩ (𝐴(,)𝐵)) → (𝐺𝑣) = (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))))
920919sseq1d 3953 . . . . . . . . . . . . . . 15 (𝑣 = (𝑤 ∩ (𝐴(,)𝐵)) → ((𝐺𝑣) ⊆ 𝑢 ↔ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢))
921918, 920anbi12d 631 . . . . . . . . . . . . . 14 (𝑣 = (𝑤 ∩ (𝐴(,)𝐵)) → ((𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) ↔ (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)))
922921rspcev 3562 . . . . . . . . . . . . 13 (((𝑤 ∩ (𝐴(,)𝐵)) ∈ 𝐽 ∧ (𝑦 ∈ (𝑤 ∩ (𝐴(,)𝐵)) ∧ (𝐺 “ (𝑤 ∩ (𝐴(,)𝐵))) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
923812, 882, 917, 922syl12anc 834 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) ∧ ¬ (𝐹𝐵) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
924806, 923pm2.61dan 810 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) ∧ ¬ (𝐹𝐴) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
925596, 924pm2.61dan 810 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
92693, 925syld3an1 1409 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) ∧ 𝑤𝐽 ∧ (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵))) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
927926rexlimdv3a 3216 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → (∃𝑤𝐽 (𝐹𝑢) = (𝑤 ∩ (𝐴[,]𝐵)) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))
92888, 927mpd 15 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) ∧ (𝐺𝑦) ∈ 𝑢) → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
929928ex 413 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑢 ∈ (𝐾t ran 𝐹)) → ((𝐺𝑦) ∈ 𝑢 → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))
930929ralrimiva 3104 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ∀𝑢 ∈ (𝐾t ran 𝐹)((𝐺𝑦) ∈ 𝑢 → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))
9313a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝐽 ∈ (TopOn‘ℝ))
932 resttopon 22321 . . . . . . . 8 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝑌) → (𝐾t ran 𝐹) ∈ (TopOn‘ran 𝐹))
93313, 71, 932syl2anc 584 . . . . . . 7 (𝜑 → (𝐾t ran 𝐹) ∈ (TopOn‘ran 𝐹))
934933adantr 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐾t ran 𝐹) ∈ (TopOn‘ran 𝐹))
935 iscnp 22397 . . . . . 6 ((𝐽 ∈ (TopOn‘ℝ) ∧ (𝐾t ran 𝐹) ∈ (TopOn‘ran 𝐹) ∧ 𝑦 ∈ ℝ) → (𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦) ↔ (𝐺:ℝ⟶ran 𝐹 ∧ ∀𝑢 ∈ (𝐾t ran 𝐹)((𝐺𝑦) ∈ 𝑢 → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))))
936931, 934, 466, 935syl3anc 1370 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦) ↔ (𝐺:ℝ⟶ran 𝐹 ∧ ∀𝑢 ∈ (𝐾t ran 𝐹)((𝐺𝑦) ∈ 𝑢 → ∃𝑣𝐽 (𝑦𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))))
93766, 930, 936mpbir2and 710 . . . 4 ((𝜑𝑦 ∈ ℝ) → 𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦))
938937ralrimiva 3104 . . 3 (𝜑 → ∀𝑦 ∈ ℝ 𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦))
939 cncnp 22440 . . . 4 ((𝐽 ∈ (TopOn‘ℝ) ∧ (𝐾t ran 𝐹) ∈ (TopOn‘ran 𝐹)) → (𝐺 ∈ (𝐽 Cn (𝐾t ran 𝐹)) ↔ (𝐺:ℝ⟶ran 𝐹 ∧ ∀𝑦 ∈ ℝ 𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦))))
9403, 933, 939sylancr 587 . . 3 (𝜑 → (𝐺 ∈ (𝐽 Cn (𝐾t ran 𝐹)) ↔ (𝐺:ℝ⟶ran 𝐹 ∧ ∀𝑦 ∈ ℝ 𝐺 ∈ ((𝐽 CnP (𝐾t ran 𝐹))‘𝑦))))
94165, 938, 940mpbir2and 710 . 2 (𝜑𝐺 ∈ (𝐽 Cn (𝐾t ran 𝐹)))
942 fnssres 6564 . . . 4 ((𝐺 Fn ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐺 ↾ (𝐴[,]𝐵)) Fn (𝐴[,]𝐵))
943504, 6, 942syl2anc 584 . . 3 (𝜑 → (𝐺 ↾ (𝐴[,]𝐵)) Fn (𝐴[,]𝐵))
944 fvres 6802 . . . . 5 (𝑦 ∈ (𝐴[,]𝐵) → ((𝐺 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐺𝑦))
945944adantl 482 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐺 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐺𝑦))
946945, 137eqtrd 2779 . . 3 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐺 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
947943, 17, 946eqfnfvd 6921 . 2 (𝜑 → (𝐺 ↾ (𝐴[,]𝐵)) = 𝐹)
948941, 947jca 512 1 (𝜑 → (𝐺 ∈ (𝐽 Cn (𝐾t ran 𝐹)) ∧ (𝐺 ↾ (𝐴[,]𝐵)) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086  wal 1537   = wceq 1539  wcel 2107  wnfc 2888  wne 2944  wral 3065  wrex 3066  Vcvv 3433  cdif 3885  cun 3886  cin 3887  wss 3888  ifcif 4460  {csn 4562   cuni 4840   class class class wbr 5075  cmpt 5158  ccnv 5589  dom cdm 5590  ran crn 5591  cres 5592  cima 5593  Fun wfun 6431   Fn wfn 6432  wf 6433  cfv 6437  (class class class)co 7284  cr 10879  +∞cpnf 11015  -∞cmnf 11016  *cxr 11017   < clt 11018  cle 11019  (,)cioo 13088  [,]cicc 13091  t crest 17140  topGenctg 17157  Topctop 22051  TopOnctopon 22068   Cn ccn 22384   CnP ccnp 22385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-map 8626  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fi 9179  df-sup 9210  df-inf 9211  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-n0 12243  df-z 12329  df-uz 12592  df-q 12698  df-ioo 13092  df-icc 13095  df-rest 17142  df-topgen 17163  df-top 22052  df-topon 22069  df-bases 22105  df-cn 22387  df-cnp 22388
This theorem is referenced by:  itgsubsticclem  43523
  Copyright terms: Public domain W3C validator