| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6125 frfi 9293 wemappo 9563 iccsplit 13502 ccatswrd 14686 pcdvdstr 16896 vdwlem12 17012 iscatd2 17693 oppccomfpropd 17739 resssetc 18105 resscatc 18122 mod1ile 18503 mod2ile 18504 prdssgrpd 18711 prdsmndd 18748 grprcan 18956 mulgnn0dir 19087 mulgnn0di 19806 mulgdi 19807 lmodprop2d 20881 lssintcl 20921 prdslmodd 20926 islmhm2 20996 islbs3 21116 mdetmul 22561 restopnb 23113 nrmsep 23295 iunconn 23366 ptpjopn 23550 blsscls2 24443 xrsblre 24751 icccmplem2 24763 icccvx 24899 conway 27763 addsass 27964 mulscom 28094 colline 28628 tglowdim2ln 28630 f1otrg 28850 f1otrge 28851 ax5seglem5 28912 axcontlem3 28945 axcontlem4 28946 axcontlem8 28950 eengtrkg 28965 2pthon3v 29925 erclwwlktr 30003 erclwwlkntr 30052 eucrctshift 30224 frgr3v 30256 frgr2wwlkeqm 30312 xrofsup 32744 lmhmimasvsca 33034 submomnd 33078 ogrpaddltbi 33086 erdszelem8 35220 cvmliftmolem2 35304 cvmlift2lem12 35336 r1peuqusdeg1 35665 btwnswapid 36035 btwnsegle 36135 broutsideof3 36144 outsidele 36150 isbasisrelowllem2 37374 cvrletrN 39291 ltltncvr 39442 atcvrj2b 39451 cvrat4 39462 2at0mat0 39544 islpln2a 39567 paddasslem11 39849 pmod1i 39867 lautcvr 40111 cdlemg4c 40631 tendoplass 40802 tendodi1 40803 tendodi2 40804 mendlmod 43213 mendassa 43214 3adantlr3 45064 ssinc 45111 ssdec 45112 ioondisj2 45522 ioondisj1 45523 stoweidlem60 46089 ply1mulgsumlem2 48363 lincresunit3lem2 48456 catprs 48986 fthcomf 49097 oppcthinco 49325 oppcthinendcALT 49327 |
| Copyright terms: Public domain | W3C validator |