![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antlr 726 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: soltmin 6138 frfi 9288 wemappo 9544 iccsplit 13462 ccatswrd 14618 pcdvdstr 16809 vdwlem12 16925 iscatd2 17625 oppccomfpropd 17673 resssetc 18042 resscatc 18059 mod1ile 18446 mod2ile 18447 prdssgrpd 18624 prdsmndd 18658 grprcan 18858 mulgnn0dir 18984 mulgnn0di 19693 mulgdi 19694 lmodprop2d 20534 lssintcl 20575 prdslmodd 20580 islmhm2 20649 islbs3 20768 mdetmul 22125 restopnb 22679 nrmsep 22861 iunconn 22932 ptpjopn 23116 blsscls2 24013 xrsblre 24327 icccmplem2 24339 icccvx 24466 conway 27300 addsass 27488 mulscom 27595 colline 27900 tglowdim2ln 27902 f1otrg 28122 f1otrge 28123 ax5seglem5 28191 axcontlem3 28224 axcontlem4 28225 axcontlem8 28229 eengtrkg 28244 2pthon3v 29197 erclwwlktr 29275 erclwwlkntr 29324 eucrctshift 29496 frgr3v 29528 frgr2wwlkeqm 29584 xrofsup 31980 submomnd 32228 ogrpaddltbi 32236 erdszelem8 34189 cvmliftmolem2 34273 cvmlift2lem12 34305 btwnswapid 34989 btwnsegle 35089 broutsideof3 35098 outsidele 35104 isbasisrelowllem2 36237 cvrletrN 38143 ltltncvr 38294 atcvrj2b 38303 cvrat4 38314 2at0mat0 38396 islpln2a 38419 paddasslem11 38701 pmod1i 38719 lautcvr 38963 cdlemg4c 39483 tendoplass 39654 tendodi1 39655 tendodi2 39656 mendlmod 41935 mendassa 41936 3adantlr3 43724 ssinc 43776 ssdec 43777 ioondisj2 44206 ioondisj1 44207 stoweidlem60 44776 ply1mulgsumlem2 47068 lincresunit3lem2 47161 catprs 47631 |
Copyright terms: Public domain | W3C validator |