![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: soltmin 6159 frfi 9319 wemappo 9587 iccsplit 13522 ccatswrd 14703 pcdvdstr 16910 vdwlem12 17026 iscatd2 17726 oppccomfpropd 17774 resssetc 18146 resscatc 18163 mod1ile 18551 mod2ile 18552 prdssgrpd 18759 prdsmndd 18796 grprcan 19004 mulgnn0dir 19135 mulgnn0di 19858 mulgdi 19859 lmodprop2d 20939 lssintcl 20980 prdslmodd 20985 islmhm2 21055 islbs3 21175 mdetmul 22645 restopnb 23199 nrmsep 23381 iunconn 23452 ptpjopn 23636 blsscls2 24533 xrsblre 24847 icccmplem2 24859 icccvx 24995 conway 27859 addsass 28053 mulscom 28180 colline 28672 tglowdim2ln 28674 f1otrg 28894 f1otrge 28895 ax5seglem5 28963 axcontlem3 28996 axcontlem4 28997 axcontlem8 29001 eengtrkg 29016 2pthon3v 29973 erclwwlktr 30051 erclwwlkntr 30100 eucrctshift 30272 frgr3v 30304 frgr2wwlkeqm 30360 xrofsup 32778 lmhmimasvsca 33027 submomnd 33070 ogrpaddltbi 33078 erdszelem8 35183 cvmliftmolem2 35267 cvmlift2lem12 35299 r1peuqusdeg1 35628 btwnswapid 35999 btwnsegle 36099 broutsideof3 36108 outsidele 36114 isbasisrelowllem2 37339 cvrletrN 39255 ltltncvr 39406 atcvrj2b 39415 cvrat4 39426 2at0mat0 39508 islpln2a 39531 paddasslem11 39813 pmod1i 39831 lautcvr 40075 cdlemg4c 40595 tendoplass 40766 tendodi1 40767 tendodi2 40768 mendlmod 43178 mendassa 43179 3adantlr3 44978 ssinc 45027 ssdec 45028 ioondisj2 45446 ioondisj1 45447 stoweidlem60 46016 ply1mulgsumlem2 48233 lincresunit3lem2 48326 catprs 48800 |
Copyright terms: Public domain | W3C validator |