![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1173 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antlr 720 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1115 |
This theorem is referenced by: soltmin 5773 frfi 8473 wemappo 8722 iccsplit 12597 ccatswrd 13745 pcdvdstr 15950 vdwlem12 16066 iscatd2 16693 oppccomfpropd 16738 resssetc 17093 resscatc 17106 mod1ile 17457 mod2ile 17458 prdsmndd 17675 grprcan 17808 mulgnn0dir 17922 mulgnn0di 18583 mulgdi 18584 lmodprop2d 19280 lssintcl 19322 prdslmodd 19327 islmhm2 19396 islbs3 19515 mdetmul 20796 restopnb 21349 nrmsep 21531 iunconn 21601 ptpjopn 21785 blsscls2 22678 xrsblre 22983 icccmplem2 22995 icccvx 23118 colline 25960 tglowdim2ln 25962 f1otrg 26169 f1otrge 26170 ax5seglem5 26231 axcontlem3 26264 axcontlem4 26265 axcontlem8 26269 eengtrkg 26284 2pthon3v 27271 erclwwlktr 27359 erclwwlkntr 27423 eucrctshift 27619 frgr3v 27655 frgr2wwlkeqm 27711 xrofsup 30079 submomnd 30254 ogrpaddltbi 30263 erdszelem8 31725 cvmliftmolem2 31809 cvmlift2lem12 31841 conway 32448 btwnswapid 32662 btwnsegle 32762 broutsideof3 32771 outsidele 32777 isbasisrelowllem2 33748 cvrletrN 35347 ltltncvr 35497 atcvrj2b 35506 cvrat4 35517 2at0mat0 35599 islpln2a 35622 paddasslem11 35904 pmod1i 35922 lautcvr 36166 cdlemg4c 36686 tendoplass 36857 tendodi1 36858 tendodi2 36859 mendlmod 38605 mendassa 38606 3adantlr3 40017 ssinc 40080 ssdec 40081 ioondisj2 40512 ioondisj1 40513 stoweidlem60 41070 ply1mulgsumlem2 43021 lincresunit3lem2 43115 |
Copyright terms: Public domain | W3C validator |