| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6083 frfi 9169 wemappo 9435 iccsplit 13382 ccatswrd 14573 pcdvdstr 16785 vdwlem12 16901 iscatd2 17584 oppccomfpropd 17630 resssetc 17996 resscatc 18013 mod1ile 18396 mod2ile 18397 prdssgrpd 18638 prdsmndd 18675 grprcan 18883 mulgnn0dir 19014 mulgnn0di 19735 mulgdi 19736 submomnd 20042 ogrpaddltbi 20049 lmodprop2d 20855 lssintcl 20895 prdslmodd 20900 islmhm2 20970 islbs3 21090 mdetmul 22536 restopnb 23088 nrmsep 23270 iunconn 23341 ptpjopn 23525 blsscls2 24417 xrsblre 24725 icccmplem2 24737 icccvx 24873 conway 27738 addsass 27946 mulscom 28076 colline 28625 tglowdim2ln 28627 f1otrg 28847 f1otrge 28848 ax5seglem5 28909 axcontlem3 28942 axcontlem4 28943 axcontlem8 28947 eengtrkg 28962 2pthon3v 29919 erclwwlktr 29997 erclwwlkntr 30046 eucrctshift 30218 frgr3v 30250 frgr2wwlkeqm 30306 xrofsup 32745 lmhmimasvsca 33015 erdszelem8 35230 cvmliftmolem2 35314 cvmlift2lem12 35346 r1peuqusdeg1 35675 btwnswapid 36050 btwnsegle 36150 broutsideof3 36159 outsidele 36165 isbasisrelowllem2 37389 cvrletrN 39311 ltltncvr 39461 atcvrj2b 39470 cvrat4 39481 2at0mat0 39563 islpln2a 39586 paddasslem11 39868 pmod1i 39886 lautcvr 40130 cdlemg4c 40650 tendoplass 40821 tendodi1 40822 tendodi2 40823 mendlmod 43221 mendassa 43222 3adantlr3 45076 ssinc 45123 ssdec 45124 ioondisj2 45532 ioondisj1 45533 stoweidlem60 46097 ply1mulgsumlem2 48418 lincresunit3lem2 48511 catprs 49042 fthcomf 49188 oppcthinco 49470 oppcthinendcALT 49472 |
| Copyright terms: Public domain | W3C validator |