| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6089 frfi 9190 wemappo 9460 iccsplit 13406 ccatswrd 14593 pcdvdstr 16806 vdwlem12 16922 iscatd2 17605 oppccomfpropd 17651 resssetc 18017 resscatc 18034 mod1ile 18417 mod2ile 18418 prdssgrpd 18625 prdsmndd 18662 grprcan 18870 mulgnn0dir 19001 mulgnn0di 19722 mulgdi 19723 submomnd 20029 ogrpaddltbi 20036 lmodprop2d 20845 lssintcl 20885 prdslmodd 20890 islmhm2 20960 islbs3 21080 mdetmul 22526 restopnb 23078 nrmsep 23260 iunconn 23331 ptpjopn 23515 blsscls2 24408 xrsblre 24716 icccmplem2 24728 icccvx 24864 conway 27728 addsass 27935 mulscom 28065 colline 28612 tglowdim2ln 28614 f1otrg 28834 f1otrge 28835 ax5seglem5 28896 axcontlem3 28929 axcontlem4 28930 axcontlem8 28934 eengtrkg 28949 2pthon3v 29906 erclwwlktr 29984 erclwwlkntr 30033 eucrctshift 30205 frgr3v 30237 frgr2wwlkeqm 30293 xrofsup 32723 lmhmimasvsca 33006 erdszelem8 35170 cvmliftmolem2 35254 cvmlift2lem12 35286 r1peuqusdeg1 35615 btwnswapid 35990 btwnsegle 36090 broutsideof3 36099 outsidele 36105 isbasisrelowllem2 37329 cvrletrN 39251 ltltncvr 39402 atcvrj2b 39411 cvrat4 39422 2at0mat0 39504 islpln2a 39527 paddasslem11 39809 pmod1i 39827 lautcvr 40071 cdlemg4c 40591 tendoplass 40762 tendodi1 40763 tendodi2 40764 mendlmod 43162 mendassa 43163 3adantlr3 45018 ssinc 45065 ssdec 45066 ioondisj2 45475 ioondisj1 45476 stoweidlem60 46042 ply1mulgsumlem2 48373 lincresunit3lem2 48466 catprs 48997 fthcomf 49143 oppcthinco 49425 oppcthinendcALT 49427 |
| Copyright terms: Public domain | W3C validator |