![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antlr 726 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: soltmin 6168 frfi 9349 wemappo 9618 iccsplit 13545 ccatswrd 14716 pcdvdstr 16923 vdwlem12 17039 iscatd2 17739 oppccomfpropd 17787 resssetc 18159 resscatc 18176 mod1ile 18563 mod2ile 18564 prdssgrpd 18771 prdsmndd 18805 grprcan 19013 mulgnn0dir 19144 mulgnn0di 19867 mulgdi 19868 lmodprop2d 20944 lssintcl 20985 prdslmodd 20990 islmhm2 21060 islbs3 21180 mdetmul 22650 restopnb 23204 nrmsep 23386 iunconn 23457 ptpjopn 23641 blsscls2 24538 xrsblre 24852 icccmplem2 24864 icccvx 25000 conway 27862 addsass 28056 mulscom 28183 colline 28675 tglowdim2ln 28677 f1otrg 28897 f1otrge 28898 ax5seglem5 28966 axcontlem3 28999 axcontlem4 29000 axcontlem8 29004 eengtrkg 29019 2pthon3v 29976 erclwwlktr 30054 erclwwlkntr 30103 eucrctshift 30275 frgr3v 30307 frgr2wwlkeqm 30363 xrofsup 32774 lmhmimasvsca 33025 submomnd 33060 ogrpaddltbi 33068 erdszelem8 35166 cvmliftmolem2 35250 cvmlift2lem12 35282 r1peuqusdeg1 35611 btwnswapid 35981 btwnsegle 36081 broutsideof3 36090 outsidele 36096 isbasisrelowllem2 37322 cvrletrN 39229 ltltncvr 39380 atcvrj2b 39389 cvrat4 39400 2at0mat0 39482 islpln2a 39505 paddasslem11 39787 pmod1i 39805 lautcvr 40049 cdlemg4c 40569 tendoplass 40740 tendodi1 40741 tendodi2 40742 mendlmod 43150 mendassa 43151 3adantlr3 44940 ssinc 44989 ssdec 44990 ioondisj2 45411 ioondisj1 45412 stoweidlem60 45981 ply1mulgsumlem2 48116 lincresunit3lem2 48209 catprs 48678 |
Copyright terms: Public domain | W3C validator |