Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antlr 724 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: soltmin 6041 frfi 9059 wemappo 9308 iccsplit 13217 ccatswrd 14381 pcdvdstr 16577 vdwlem12 16693 iscatd2 17390 oppccomfpropd 17438 resssetc 17807 resscatc 17824 mod1ile 18211 mod2ile 18212 prdsmndd 18418 grprcan 18613 mulgnn0dir 18733 mulgnn0di 19427 mulgdi 19428 lmodprop2d 20185 lssintcl 20226 prdslmodd 20231 islmhm2 20300 islbs3 20417 mdetmul 21772 restopnb 22326 nrmsep 22508 iunconn 22579 ptpjopn 22763 blsscls2 23660 xrsblre 23974 icccmplem2 23986 icccvx 24113 colline 27010 tglowdim2ln 27012 f1otrg 27232 f1otrge 27233 ax5seglem5 27301 axcontlem3 27334 axcontlem4 27335 axcontlem8 27339 eengtrkg 27354 2pthon3v 28308 erclwwlktr 28386 erclwwlkntr 28435 eucrctshift 28607 frgr3v 28639 frgr2wwlkeqm 28695 xrofsup 31090 submomnd 31336 ogrpaddltbi 31344 erdszelem8 33160 cvmliftmolem2 33244 cvmlift2lem12 33276 conway 33993 btwnswapid 34319 btwnsegle 34419 broutsideof3 34428 outsidele 34434 isbasisrelowllem2 35527 cvrletrN 37287 ltltncvr 37437 atcvrj2b 37446 cvrat4 37457 2at0mat0 37539 islpln2a 37562 paddasslem11 37844 pmod1i 37862 lautcvr 38106 cdlemg4c 38626 tendoplass 38797 tendodi1 38798 tendodi2 38799 mendlmod 41018 mendassa 41019 3adantlr3 42584 ssinc 42637 ssdec 42638 ioondisj2 43031 ioondisj1 43032 stoweidlem60 43601 ply1mulgsumlem2 45728 lincresunit3lem2 45821 catprs 46292 |
Copyright terms: Public domain | W3C validator |