Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1135 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antlr 723 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: soltmin 6030 frfi 8989 wemappo 9238 iccsplit 13146 ccatswrd 14309 pcdvdstr 16505 vdwlem12 16621 iscatd2 17307 oppccomfpropd 17355 resssetc 17723 resscatc 17740 mod1ile 18126 mod2ile 18127 prdsmndd 18333 grprcan 18528 mulgnn0dir 18648 mulgnn0di 19342 mulgdi 19343 lmodprop2d 20100 lssintcl 20141 prdslmodd 20146 islmhm2 20215 islbs3 20332 mdetmul 21680 restopnb 22234 nrmsep 22416 iunconn 22487 ptpjopn 22671 blsscls2 23566 xrsblre 23880 icccmplem2 23892 icccvx 24019 colline 26914 tglowdim2ln 26916 f1otrg 27136 f1otrge 27137 ax5seglem5 27204 axcontlem3 27237 axcontlem4 27238 axcontlem8 27242 eengtrkg 27257 2pthon3v 28209 erclwwlktr 28287 erclwwlkntr 28336 eucrctshift 28508 frgr3v 28540 frgr2wwlkeqm 28596 xrofsup 30992 submomnd 31238 ogrpaddltbi 31246 erdszelem8 33060 cvmliftmolem2 33144 cvmlift2lem12 33176 conway 33920 btwnswapid 34246 btwnsegle 34346 broutsideof3 34355 outsidele 34361 isbasisrelowllem2 35454 cvrletrN 37214 ltltncvr 37364 atcvrj2b 37373 cvrat4 37384 2at0mat0 37466 islpln2a 37489 paddasslem11 37771 pmod1i 37789 lautcvr 38033 cdlemg4c 38553 tendoplass 38724 tendodi1 38725 tendodi2 38726 mendlmod 40934 mendassa 40935 3adantlr3 42473 ssinc 42526 ssdec 42527 ioondisj2 42921 ioondisj1 42922 stoweidlem60 43491 ply1mulgsumlem2 45616 lincresunit3lem2 45709 catprs 46180 |
Copyright terms: Public domain | W3C validator |