| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6087 frfi 9176 wemappo 9442 iccsplit 13387 ccatswrd 14578 pcdvdstr 16790 vdwlem12 16906 iscatd2 17589 oppccomfpropd 17635 resssetc 18001 resscatc 18018 mod1ile 18401 mod2ile 18402 prdssgrpd 18643 prdsmndd 18680 grprcan 18888 mulgnn0dir 19019 mulgnn0di 19739 mulgdi 19740 submomnd 20046 ogrpaddltbi 20053 lmodprop2d 20859 lssintcl 20899 prdslmodd 20904 islmhm2 20974 islbs3 21094 mdetmul 22539 restopnb 23091 nrmsep 23273 iunconn 23344 ptpjopn 23528 blsscls2 24420 xrsblre 24728 icccmplem2 24740 icccvx 24876 conway 27741 addsass 27949 mulscom 28079 colline 28628 tglowdim2ln 28630 f1otrg 28850 f1otrge 28851 ax5seglem5 28913 axcontlem3 28946 axcontlem4 28947 axcontlem8 28951 eengtrkg 28966 2pthon3v 29923 erclwwlktr 30004 erclwwlkntr 30053 eucrctshift 30225 frgr3v 30257 frgr2wwlkeqm 30313 xrofsup 32754 lmhmimasvsca 33027 erdszelem8 35263 cvmliftmolem2 35347 cvmlift2lem12 35379 r1peuqusdeg1 35708 btwnswapid 36082 btwnsegle 36182 broutsideof3 36191 outsidele 36197 isbasisrelowllem2 37421 cvrletrN 39392 ltltncvr 39542 atcvrj2b 39551 cvrat4 39562 2at0mat0 39644 islpln2a 39667 paddasslem11 39949 pmod1i 39967 lautcvr 40211 cdlemg4c 40731 tendoplass 40902 tendodi1 40903 tendodi2 40904 mendlmod 43306 mendassa 43307 3adantlr3 45161 ssinc 45208 ssdec 45209 ioondisj2 45617 ioondisj1 45618 stoweidlem60 46182 ply1mulgsumlem2 48512 lincresunit3lem2 48605 catprs 49136 fthcomf 49282 oppcthinco 49564 oppcthinendcALT 49566 |
| Copyright terms: Public domain | W3C validator |