| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6109 frfi 9232 wemappo 9502 iccsplit 13446 ccatswrd 14633 pcdvdstr 16847 vdwlem12 16963 iscatd2 17642 oppccomfpropd 17688 resssetc 18054 resscatc 18071 mod1ile 18452 mod2ile 18453 prdssgrpd 18660 prdsmndd 18697 grprcan 18905 mulgnn0dir 19036 mulgnn0di 19755 mulgdi 19756 lmodprop2d 20830 lssintcl 20870 prdslmodd 20875 islmhm2 20945 islbs3 21065 mdetmul 22510 restopnb 23062 nrmsep 23244 iunconn 23315 ptpjopn 23499 blsscls2 24392 xrsblre 24700 icccmplem2 24712 icccvx 24848 conway 27711 addsass 27912 mulscom 28042 colline 28576 tglowdim2ln 28578 f1otrg 28798 f1otrge 28799 ax5seglem5 28860 axcontlem3 28893 axcontlem4 28894 axcontlem8 28898 eengtrkg 28913 2pthon3v 29873 erclwwlktr 29951 erclwwlkntr 30000 eucrctshift 30172 frgr3v 30204 frgr2wwlkeqm 30260 xrofsup 32690 lmhmimasvsca 32980 submomnd 33024 ogrpaddltbi 33032 erdszelem8 35185 cvmliftmolem2 35269 cvmlift2lem12 35301 r1peuqusdeg1 35630 btwnswapid 36005 btwnsegle 36105 broutsideof3 36114 outsidele 36120 isbasisrelowllem2 37344 cvrletrN 39266 ltltncvr 39417 atcvrj2b 39426 cvrat4 39437 2at0mat0 39519 islpln2a 39542 paddasslem11 39824 pmod1i 39842 lautcvr 40086 cdlemg4c 40606 tendoplass 40777 tendodi1 40778 tendodi2 40779 mendlmod 43178 mendassa 43179 3adantlr3 45034 ssinc 45081 ssdec 45082 ioondisj2 45491 ioondisj1 45492 stoweidlem60 46058 ply1mulgsumlem2 48376 lincresunit3lem2 48469 catprs 49000 fthcomf 49146 oppcthinco 49428 oppcthinendcALT 49430 |
| Copyright terms: Public domain | W3C validator |