| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6112 frfi 9239 wemappo 9509 iccsplit 13453 ccatswrd 14640 pcdvdstr 16854 vdwlem12 16970 iscatd2 17649 oppccomfpropd 17695 resssetc 18061 resscatc 18078 mod1ile 18459 mod2ile 18460 prdssgrpd 18667 prdsmndd 18704 grprcan 18912 mulgnn0dir 19043 mulgnn0di 19762 mulgdi 19763 lmodprop2d 20837 lssintcl 20877 prdslmodd 20882 islmhm2 20952 islbs3 21072 mdetmul 22517 restopnb 23069 nrmsep 23251 iunconn 23322 ptpjopn 23506 blsscls2 24399 xrsblre 24707 icccmplem2 24719 icccvx 24855 conway 27718 addsass 27919 mulscom 28049 colline 28583 tglowdim2ln 28585 f1otrg 28805 f1otrge 28806 ax5seglem5 28867 axcontlem3 28900 axcontlem4 28901 axcontlem8 28905 eengtrkg 28920 2pthon3v 29880 erclwwlktr 29958 erclwwlkntr 30007 eucrctshift 30179 frgr3v 30211 frgr2wwlkeqm 30267 xrofsup 32697 lmhmimasvsca 32987 submomnd 33031 ogrpaddltbi 33039 erdszelem8 35192 cvmliftmolem2 35276 cvmlift2lem12 35308 r1peuqusdeg1 35637 btwnswapid 36012 btwnsegle 36112 broutsideof3 36121 outsidele 36127 isbasisrelowllem2 37351 cvrletrN 39273 ltltncvr 39424 atcvrj2b 39433 cvrat4 39444 2at0mat0 39526 islpln2a 39549 paddasslem11 39831 pmod1i 39849 lautcvr 40093 cdlemg4c 40613 tendoplass 40784 tendodi1 40785 tendodi2 40786 mendlmod 43185 mendassa 43186 3adantlr3 45041 ssinc 45088 ssdec 45089 ioondisj2 45498 ioondisj1 45499 stoweidlem60 46065 ply1mulgsumlem2 48380 lincresunit3lem2 48473 catprs 49004 fthcomf 49150 oppcthinco 49432 oppcthinendcALT 49434 |
| Copyright terms: Public domain | W3C validator |