| Metamath
Proof Explorer Theorem List (p. 445 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description | ||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | ||||||||||||||||||||||||||||||||
| Theorem | iotaequ 44401* | Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (℩𝑥𝑥 = 𝑦) = 𝑦 | ||||||||||||||||||||||||||||||||
| Theorem | iotavalb 44402* | Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 6501. (Contributed by Andrew Salmon, 11-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) | ||||||||||||||||||||||||||||||||
| Theorem | iotasbc5 44403* | Theorem *14.205 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 11-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))) | ||||||||||||||||||||||||||||||||
| Theorem | pm14.24 44404* | Theorem *14.24 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (∃!𝑥𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = (℩𝑥𝜑))) | ||||||||||||||||||||||||||||||||
| Theorem | iotavalsb 44405* | Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) | ||||||||||||||||||||||||||||||||
| Theorem | sbiota1 44406 | Theorem *14.25 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) | ||||||||||||||||||||||||||||||||
| Theorem | sbaniota 44407 | Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) | ||||||||||||||||||||||||||||||||
| Theorem | eubiOLD 44408 | Obsolete proof of eubi 2583 as of 7-Oct-2022. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)) | ||||||||||||||||||||||||||||||||
| Theorem | iotasbcq 44409 | Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒 ↔ [(℩𝑥𝜓) / 𝑦]𝜒)) | ||||||||||||||||||||||||||||||||
| Theorem | elnev 44410* | Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V) | ||||||||||||||||||||||||||||||||
| Theorem | rusbcALT 44411 | A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||||||||||||||||||||||||||||||||
| Theorem | compeq 44412* | Equality between two ways of saying "the complement of 𝐴". (Contributed by Andrew Salmon, 15-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (V ∖ 𝐴) = {𝑥 ∣ ¬ 𝑥 ∈ 𝐴} | ||||||||||||||||||||||||||||||||
| Theorem | compne 44413 | The complement of 𝐴 is not equal to 𝐴. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 11-Nov-2021.) | ||||||||||||||||||||||||||||||
| ⊢ (V ∖ 𝐴) ≠ 𝐴 | ||||||||||||||||||||||||||||||||
| Theorem | compab 44414 | Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) | ||||||||||||||||||||||||||||||
| ⊢ (V ∖ {𝑧 ∣ 𝜑}) = {𝑧 ∣ ¬ 𝜑} | ||||||||||||||||||||||||||||||||
| Theorem | conss2 44415 | Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴)) | ||||||||||||||||||||||||||||||||
| Theorem | conss1 44416 | Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴) | ||||||||||||||||||||||||||||||||
| Theorem | ralbidar 44417 | More general form of ralbida 3253. (Contributed by Andrew Salmon, 25-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||||||||||||||||||||||||||||||||
| Theorem | rexbidar 44418 | More general form of rexbida 3254. (Contributed by Andrew Salmon, 25-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||||||||||||||||||||||||||||||||
| Theorem | dropab1 44419 | Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑥, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ 𝜑}) | ||||||||||||||||||||||||||||||||
| Theorem | dropab2 44420 | Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑧, 𝑥〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜑}) | ||||||||||||||||||||||||||||||||
| Theorem | ipo0 44421 | If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ ( I Po 𝐴 ↔ 𝐴 = ∅) | ||||||||||||||||||||||||||||||||
| Theorem | ifr0 44422 | A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ ( I Fr 𝐴 ↔ 𝐴 = ∅) | ||||||||||||||||||||||||||||||||
| Theorem | ordpss 44423 | ordelpss 6380 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) | ||||||||||||||||||||||||||||||||
| Theorem | fvsb 44424* | Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | ||||||||||||||||||||||||||||||||
| Theorem | fveqsb 44425* | Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (𝑥 = (𝐹‘𝐴) → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | ||||||||||||||||||||||||||||||||
| Theorem | xpexb 44426 | A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V) | ||||||||||||||||||||||||||||||||
| Theorem | trelpss 44427 | An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5637, ax-reg 9604 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.) | ||||||||||||||||||||||||||||||
| ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) | ||||||||||||||||||||||||||||||||
| Theorem | addcomgi 44428 | Generalization of commutative law for addition. Simplifies proofs dealing with vectors. However, it is dependent on our particular definition of ordered pair. (Contributed by Andrew Salmon, 28-Jan-2012.) (Revised by Mario Carneiro, 6-May-2015.) | ||||||||||||||||||||||||||||||
| ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) | ||||||||||||||||||||||||||||||||
| Syntax | cplusr 44429 | Introduce the operation of vector addition. | ||||||||||||||||||||||||||||||
| class +𝑟 | ||||||||||||||||||||||||||||||||
| Syntax | cminusr 44430 | Introduce the operation of vector subtraction. | ||||||||||||||||||||||||||||||
| class -𝑟 | ||||||||||||||||||||||||||||||||
| Syntax | ctimesr 44431 | Introduce the operation of scalar multiplication. | ||||||||||||||||||||||||||||||
| class .𝑣 | ||||||||||||||||||||||||||||||||
| Syntax | cptdfc 44432 | PtDf is a predicate that is crucial for the definition of lines as well as proving a number of important theorems. | ||||||||||||||||||||||||||||||
| class PtDf(𝐴, 𝐵) | ||||||||||||||||||||||||||||||||
| Syntax | crr3c 44433 | RR3 is a class. | ||||||||||||||||||||||||||||||
| class RR3 | ||||||||||||||||||||||||||||||||
| Syntax | cline3 44434 | line3 is a class. | ||||||||||||||||||||||||||||||
| class line3 | ||||||||||||||||||||||||||||||||
| Definition | df-addr 44435* | Define the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ +𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) + (𝑦‘𝑣)))) | ||||||||||||||||||||||||||||||||
| Definition | df-subr 44436* | Define the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ -𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣)))) | ||||||||||||||||||||||||||||||||
| Definition | df-mulv 44437* | Define the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ .𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣)))) | ||||||||||||||||||||||||||||||||
| Theorem | addrval 44438* | Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) + (𝐵‘𝑣)))) | ||||||||||||||||||||||||||||||||
| Theorem | subrval 44439* | Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) − (𝐵‘𝑣)))) | ||||||||||||||||||||||||||||||||
| Theorem | mulvval 44440* | Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) | ||||||||||||||||||||||||||||||||
| Theorem | addrfv 44441 | Vector addition at a value. The operation takes each vector 𝐴 and 𝐵 and forms a new vector whose values are the sum of each of the values of 𝐴 and 𝐵. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) | ||||||||||||||||||||||||||||||||
| Theorem | subrfv 44442 | Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) | ||||||||||||||||||||||||||||||||
| Theorem | mulvfv 44443 | Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) | ||||||||||||||||||||||||||||||||
| Theorem | addrfn 44444 | Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) Fn ℝ) | ||||||||||||||||||||||||||||||||
| Theorem | subrfn 44445 | Vector subtraction produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) Fn ℝ) | ||||||||||||||||||||||||||||||||
| Theorem | mulvfn 44446 | Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) Fn ℝ) | ||||||||||||||||||||||||||||||||
| Theorem | addrcom 44447 | Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) | ||||||||||||||||||||||||||||||||
| Definition | df-ptdf 44448* | Define the predicate PtDf, which is a utility definition used to shorten definitions and simplify proofs. (Contributed by Andrew Salmon, 15-Jul-2012.) | ||||||||||||||||||||||||||||||
| ⊢ PtDf(𝐴, 𝐵) = (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2, 3})) | ||||||||||||||||||||||||||||||||
| Definition | df-rr3 44449 | Define the set of all points RR3. We define each point 𝐴 as a function to allow the use of vector addition and subtraction as well as scalar multiplication in our proofs. (Contributed by Andrew Salmon, 15-Jul-2012.) | ||||||||||||||||||||||||||||||
| ⊢ RR3 = (ℝ ↑m {1, 2, 3}) | ||||||||||||||||||||||||||||||||
| Definition | df-line3 44450* | Define the set of all lines. A line is an infinite subset of RR3 that satisfies a PtDf property. (Contributed by Andrew Salmon, 15-Jul-2012.) | ||||||||||||||||||||||||||||||
| ⊢ line3 = {𝑥 ∈ 𝒫 RR3 ∣ (2o ≼ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))} | ||||||||||||||||||||||||||||||||
We are sad to report the passing of long-time contributor Alan Sare (Nov. 9, 1954 - Mar. 23, 2019). Alan's first contribution to Metamath was a shorter proof for tfrlem8 8396 in 2008. He developed a tool called "completeusersproof" that assists developing proofs using his "virtual deduction" method: https://us.metamath.org/other.html#completeusersproof 8396. His virtual deduction method is explained in the comment for wvd1 44542. Below are some excerpts from his first emails to NM in 2007: ...I have been interested in proving set theory theorems for many years for mental exercise. I enjoy it. I have used a book by Martin Zuckerman. It is informal. I am interested in completely and perfectly proving theorems. Mr. Zuckerman leaves out most of the steps of a proof, of course, like most authors do, as you have noted. A complete proof for higher theorems would require a volume of writing similar to the Metamath documents. So I am frustrated when I am not capable of constructing a proof and Zuckerman leaves out steps I do not understand. I could search for the steps in other texts, but I don't do that too much. Metamath may be the answer for me.... ...If we go beyond mathematics, I believe that it is possible to write down all human knowledge in a way similar to the way you have explicated large areas of mathematics. Of course, that would be a much, much more difficult job. For example, it is possible to take a hard science like physics, construct axioms based on experimental results, and to cast all of physics into a collection of axioms and theorems. Maybe this has already been attempted, although I am not familiar with it. When one then moves on to the soft sciences such as social science, this job gets much more difficult. The key is: All human thought consists of logical operations on abstract objects. Usually, these logical operations are done informally. There is no reason why one cannot take any subject and explicate it and take it down to the indivisible postulates in a formal rigorous way.... ...When I read a math book or an engineering book I come across something I don't understand and I am compelled to understand it. But, often it is hopeless. I don't have the time. Or, I would have to read the same thing by multiple authors in the hope that different authors would give parts of the working proof that others have omitted. It is very inefficient. Because I have always been inclined to "get to the bottom" for a 100% fully understood proof.... | ||||||||||||||||||||||||||||||||
| Theorem | idiALT 44451 | Placeholder for idi 1. Though unnecessary, this theorem is sometimes used in proofs in this mathbox for pedagogical purposes. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||||||||
| Theorem | exbir 44452 | Exportation implication also converting the consequent from a biconditional to an implication. Derived automatically from exbirVD 44825. (Contributed by Alan Sare, 31-Dec-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||||||||||||||||||||||||||||||||
| Theorem | 3impexpbicom 44453 | Version of 3impexp 1359 where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) | ||||||||||||||||||||||||||||||||
| Theorem | 3impexpbicomi 44454 | Inference associated with 3impexpbicom 44453. Derived automatically from 3impexpbicomiVD 44830. (Contributed by Alan Sare, 31-Dec-2011.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | bi1imp 44455 | Importation inference similar to imp 406, except the outermost implication of the hypothesis is a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||||||||||||||||||||||||||||||||
| Theorem | bi2imp 44456 | Importation inference similar to imp 406, except both implications of the hypothesis are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||||||||||||||||||||||||||||||||
| Theorem | bi3impb 44457 | Similar to 3impb 1114 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi3impa 44458 | Similar to 3impa 1109 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi23impib 44459 | 3impib 1116 with the inner implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi13impib 44460 | 3impib 1116 with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi123impib 44461 | 3impib 1116 with the implications of the hypothesis biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ ((𝜓 ∧ 𝜒) ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi13impia 44462 | 3impia 1117 with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜒 → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi123impia 44463 | 3impia 1117 with the implications of the hypothesis biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi33imp12 44464 | 3imp 1110 with innermost implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi13imp23 44465 | 3imp 1110 with outermost implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi13imp2 44466 | Similar to 3imp 1110 except the outermost and innermost implications are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi12imp3 44467 | Similar to 3imp 1110 except all but innermost implication are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 ↔ (𝜒 → 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi23imp1 44468 | Similar to 3imp 1110 except all but outermost implication are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi123imp0 44469 | Similar to 3imp 1110 except all implications are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 ↔ (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | 4animp1 44470 | A single hypothesis unification deduction with an assertion which is an implication with a 4-right-nested conjunction antecedent. (Contributed by Alan Sare, 30-May-2018.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||||||||||||||||||||||||||||||||
| Theorem | 4an31 44471 | A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.) | ||||||||||||||||||||||||||||||
| ⊢ ((((𝜒 ∧ 𝜓) ∧ 𝜑) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||||||||||||||||||||||||||||||||
| Theorem | 4an4132 44472 | A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.) | ||||||||||||||||||||||||||||||
| ⊢ ((((𝜃 ∧ 𝜒) ∧ 𝜓) ∧ 𝜑) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||||||||||||||||||||||||||||||||
| Theorem | expcomdg 44473 | Biconditional form of expcomd 416. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ↔ (𝜑 → (𝜒 → (𝜓 → 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | iidn3 44474 | idn3 44588 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜒))) | ||||||||||||||||||||||||||||||||
| Theorem | ee222 44475 | e222 44609 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||||||||||||||||||||||||||||||||
| Theorem | ee3bir 44476 | Right-biconditional form of e3 44709 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 22-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜏 ↔ 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) | ||||||||||||||||||||||||||||||||
| Theorem | ee13 44477 | e13 44720 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 28-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) & ⊢ (𝜓 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜂))) | ||||||||||||||||||||||||||||||||
| Theorem | ee121 44478 | e121 44629 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜂)) | ||||||||||||||||||||||||||||||||
| Theorem | ee122 44479 | e122 44626 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → (𝜒 → 𝜏)) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜂)) | ||||||||||||||||||||||||||||||||
| Theorem | ee333 44480 | e333 44705 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜁))) | ||||||||||||||||||||||||||||||||
| Theorem | ee323 44481 | e323 44738 without virtual deductions. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜁))) | ||||||||||||||||||||||||||||||||
| Theorem | 3ornot23 44482 | If the second and third disjuncts of a true triple disjunction are false, then the first disjunct is true. Automatically derived from 3ornot23VD 44819. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒 ∨ 𝜑 ∨ 𝜓) → 𝜒)) | ||||||||||||||||||||||||||||||||
| Theorem | orbi1r 44483 | orbi1 917 with order of disjuncts reversed. Derived from orbi1rVD 44820. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))) | ||||||||||||||||||||||||||||||||
| Theorem | 3orbi123 44484 | pm4.39 978 with a 3-conjunct antecedent. This proof is 3orbi123VD 44822 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) → ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂))) | ||||||||||||||||||||||||||||||||
| Theorem | syl5imp 44485 | Closed form of syl5 34. Derived automatically from syl5impVD 44835. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜓) → (𝜑 → (𝜃 → 𝜒)))) | ||||||||||||||||||||||||||||||||
| Theorem | impexpd 44486 |
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. After the
User's Proof was completed, it was minimized. The completed User's Proof
before minimization is not shown. (Contributed by Alan Sare,
18-Mar-2012.) (Proof modification is discouraged.)
(New usage is discouraged.)
| ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | com3rgbi 44487 |
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The
completed Virtual Deduction Proof (not shown) was minimized. The
minimized proof is shown.
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
| ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) ↔ (𝜒 → (𝜑 → (𝜓 → 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | impexpdcom 44488 |
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The
completed Virtual Deduction Proof (not shown) was minimized. The
minimized proof is shown. (Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
| ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ↔ (𝜓 → (𝜒 → (𝜑 → 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | ee1111 44489 |
Non-virtual deduction form of e1111 44648. (Contributed by Alan Sare,
18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
The following User's Proof is a Virtual Deduction proof
completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. The completed Virtual Deduction Proof (not shown) was
minimized. The minimized proof is shown.
| ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂)))) ⇒ ⊢ (𝜑 → 𝜂) | ||||||||||||||||||||||||||||||||
| Theorem | pm2.43bgbi 44490 |
Logical equivalence of a 2-left-nested implication and a 1-left-nested
implicated
when two antecedents of the former implication are identical.
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The
completed Virtual
Deduction Proof (not shown) was minimized. The minimized proof is
shown.
| ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → (𝜓 → (𝜑 → 𝜒))) ↔ (𝜓 → (𝜑 → 𝜒))) | ||||||||||||||||||||||||||||||||
| Theorem | pm2.43cbi 44491 |
Logical equivalence of a 3-left-nested implication and a 2-left-nested
implicated when two antecedents of the former implication are identical.
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
The following User's Proof is
a Virtual Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof
(not shown) was minimized. The minimized proof is shown.
| ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜑 → 𝜃)))) ↔ (𝜓 → (𝜒 → (𝜑 → 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | ee233 44492 |
Non-virtual deduction form of e233 44737. (Contributed by Alan Sare,
18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The
completed Virtual
Deduction Proof (not shown) was minimized. The minimized proof is
shown.
| ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) & ⊢ (𝜒 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜁))) | ||||||||||||||||||||||||||||||||
| Theorem | imbi13 44493 | Join three logical equivalences to form equivalence of implications. imbi13 44493 is imbi13VD 44846 without virtual deductions and was automatically derived from imbi13VD 44846 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂)))))) | ||||||||||||||||||||||||||||||||
| Theorem | ee33 44494 |
Non-virtual deduction form of e33 44706. (Contributed by Alan Sare,
18-Mar-2012.) (Proof modification is discouraged.)
(New usage is discouraged.)
The following User's Proof is a Virtual Deduction proof
completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. The completed Virtual Deduction Proof (not shown) was
minimized. The minimized proof is shown.
| ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||||||||||||||||||||||||||||||||
| Theorem | con5 44495 | Biconditional contraposition variation. This proof is con5VD 44872 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) | ||||||||||||||||||||||||||||||||
| Theorem | con5i 44496 | Inference form of con5 44495. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (¬ 𝜑 → 𝜓) | ||||||||||||||||||||||||||||||||
| Theorem | exlimexi 44497 | Inference similar to Theorem 19.23 of [Margaris] p. 90. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (∃𝑥𝜑 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥𝜑 → 𝜓) | ||||||||||||||||||||||||||||||||
| Theorem | sb5ALT 44498* | Equivalence for substitution. Alternate proof of sb5 2276. This proof is sb5ALTVD 44885 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||||||||||||||||||||||||||||||||
| Theorem | eexinst01 44499 | exinst01 44598 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ∃𝑥𝜓 & ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||||||||||||||||||||||||||||||||
| Theorem | eexinst11 44500 | exinst11 44599 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |