![]() |
Metamath
Proof Explorer Theorem List (p. 445 of 475) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30034) |
![]() (30035-31557) |
![]() (31558-47500) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dvcosre 44401 | The real derivative of the cosine. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)) | ||
Theorem | dvsinax 44402* | Derivative exercise: the derivative with respect to y of sin(Ay), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦))))) | ||
Theorem | dvsubf 44403 | The subtraction rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘f − 𝐺)) = ((𝑆 D 𝐹) ∘f − (𝑆 D 𝐺))) | ||
Theorem | dvmptconst 44404* | Function-builder for derivative: derivative of a constant. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ 0)) | ||
Theorem | dvcnre 44405 | From complex differentiation to real differentiation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐹:ℂ⟶ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹)) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ)) | ||
Theorem | dvmptidg 44406* | Function-builder for derivative: derivative of the identity. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝐴 ↦ 𝑥)) = (𝑥 ∈ 𝐴 ↦ 1)) | ||
Theorem | dvresntr 44407 | Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) ⇒ ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) | ||
Theorem | fperdvper 44408* | The derivative of a periodic function is periodic. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = (ℝ D 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺‘𝑥))) | ||
Theorem | dvasinbx 44409* | Derivative exercise: the derivative with respect to y of A x sin(By), given two constants 𝐴 and 𝐵. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · (sin‘(𝐵 · 𝑦))))) = (𝑦 ∈ ℂ ↦ ((𝐴 · 𝐵) · (cos‘(𝐵 · 𝑦))))) | ||
Theorem | dvresioo 44410 | Restriction of a derivative to an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℝ D (𝐹 ↾ (𝐵(,)𝐶))) = ((ℝ D 𝐹) ↾ (𝐵(,)𝐶))) | ||
Theorem | dvdivf 44411 | The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) | ||
Theorem | dvdivbd 44412* | A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐶) ≤ 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐵) ≤ 𝑅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐷) ≤ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐴) ≤ 𝑄) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐵)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐸 ≤ (abs‘𝐵)) & ⊢ 𝐹 = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵))) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝑋 (abs‘(𝐹‘𝑥)) ≤ 𝑏) | ||
Theorem | dvsubcncf 44413 | A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘f − 𝐺)) ∈ (𝑋–cn→ℂ)) | ||
Theorem | dvmulcncf 44414 | A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘f · 𝐺)) ∈ (𝑋–cn→ℂ)) | ||
Theorem | dvcosax 44415* | Derivative exercise: the derivative with respect to x of cos(Ax), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥))))) | ||
Theorem | dvdivcncf 44416 | A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) & ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) ∈ (𝑋–cn→ℂ)) | ||
Theorem | dvbdfbdioolem1 44417* | Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)𝐵)) ⇒ ⊢ (𝜑 → ((abs‘((𝐹‘𝐷) − (𝐹‘𝐶))) ≤ (𝐾 · (𝐷 − 𝐶)) ∧ (abs‘((𝐹‘𝐷) − (𝐹‘𝐶))) ≤ (𝐾 · (𝐵 − 𝐴)))) | ||
Theorem | dvbdfbdioolem2 44418* | A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾) & ⊢ 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵 − 𝐴))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑀) | ||
Theorem | dvbdfbdioo 44419* | A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) | ||
Theorem | ioodvbdlimc1lem1 44420* | If 𝐹 has bounded derivative on (𝐴(,)𝐵) then a sequence of points in its image converges to its lim sup. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) & ⊢ 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗))) & ⊢ (𝜑 → 𝑅 ∈ dom ⇝ ) & ⊢ 𝐾 = inf({𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (lim sup‘𝑆)) | ||
Theorem | ioodvbdlimc1lem2 44421* | Limit at the lower bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) & ⊢ 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) & ⊢ 𝑀 = ((⌊‘(1 / (𝐵 − 𝐴))) + 1) & ⊢ 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗)))) & ⊢ 𝑅 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐴 + (1 / 𝑗))) & ⊢ 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐴)) < (1 / 𝑗))) ⇒ ⊢ (𝜑 → (lim sup‘𝑆) ∈ (𝐹 limℂ 𝐴)) | ||
Theorem | ioodvbdlimc1 44422* | A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by AV, 3-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐴) ≠ ∅) | ||
Theorem | ioodvbdlimc2lem 44423* | Limit at the upper bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) & ⊢ 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) & ⊢ 𝑀 = ((⌊‘(1 / (𝐵 − 𝐴))) + 1) & ⊢ 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) & ⊢ 𝑅 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐵 − (1 / 𝑗))) & ⊢ 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗))) ⇒ ⊢ (𝜑 → (lim sup‘𝑆) ∈ (𝐹 limℂ 𝐵)) | ||
Theorem | ioodvbdlimc2 44424* | A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by AV, 3-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) | ||
Theorem | dvdmsscn 44425 | 𝑋 is a subset of ℂ. This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) ⇒ ⊢ (𝜑 → 𝑋 ⊆ ℂ) | ||
Theorem | dvmptmulf 44426* | Function-builder for derivative, product rule. A version of dvmptmul 25407 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) | ||
Theorem | dvnmptdivc 44427* | Function-builder for iterated derivative, division rule for constant divisor. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ (𝐵 / 𝐶))) | ||
Theorem | dvdsn1add 44428 | If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀, then 𝐾 does not divide (𝑀 + 𝑁). (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → ¬ 𝐾 ∥ (𝑀 + 𝑁))) | ||
Theorem | dvxpaek 44429* | Derivative of the polynomial (𝑥 + 𝐴)↑𝐾. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥 ∈ 𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))) | ||
Theorem | dvnmptconst 44430* | The 𝑁-th derivative of a constant function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) | ||
Theorem | dvnxpaek 44431* | The 𝑛-th derivative of the polynomial (𝑥 + 𝐴)↑𝐾. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾)) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾 − 𝑁))) · ((𝑥 + 𝐴)↑(𝐾 − 𝑁)))))) | ||
Theorem | dvnmul 44432* | Function-builder for the 𝑁-th derivative, product rule. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐴) & ⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ) & ⊢ 𝐶 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝐷 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘)) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))) | ||
Theorem | dvmptfprodlem 44433* | Induction step for dvmptfprod 44434. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑖𝐹 & ⊢ Ⅎ𝑗𝐺 & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝐸 ∈ V) & ⊢ (𝜑 → ¬ 𝐸 ∈ 𝐷) & ⊢ (𝜑 → (𝐷 ∪ {𝐸}) ⊆ 𝐼) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ 𝐷) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝐷 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐹)) = (𝑥 ∈ 𝑋 ↦ 𝐺)) & ⊢ (𝑖 = 𝐸 → 𝐴 = 𝐹) & ⊢ (𝑗 = 𝐸 → 𝐶 = 𝐺) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴))) | ||
Theorem | dvmptfprod 44434* | Function-builder for derivative, finite product rule. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))) | ||
Theorem | dvnprodlem1 44435* | 𝐷 is bijective. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ 𝐶 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) & ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑇) & ⊢ (𝜑 → ¬ 𝑍 ∈ 𝑅) & ⊢ (𝜑 → (𝑅 ∪ {𝑍}) ⊆ 𝑇) ⇒ ⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) | ||
Theorem | dvnprodlem2 44436* | Induction step for dvnprodlem2 44436. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) & ⊢ 𝐶 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) & ⊢ (𝜑 → 𝑅 ⊆ 𝑇) & ⊢ (𝜑 → 𝑍 ∈ (𝑇 ∖ 𝑅)) & ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑁)) & ⊢ 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥)))‘𝐽) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | ||
Theorem | dvnprodlem3 44437* | The multinomial formula for the 𝑘-th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥)) & ⊢ 𝐷 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | ||
Theorem | dvnprod 44438* | The multinomial formula for the 𝑁-th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥)) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | ||
Theorem | itgsin0pilem1 44439* | Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡)) ⇒ ⊢ ∫(0(,)π)(sin‘𝑥) d𝑥 = 2 | ||
Theorem | ibliccsinexp 44440* | sin^n on a closed interval is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1) | ||
Theorem | itgsin0pi 44441 | Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ ∫(0(,)π)(sin‘𝑥) d𝑥 = 2 | ||
Theorem | iblioosinexp 44442* | sin^n on an open integral is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1) | ||
Theorem | itgsinexplem1 44443* | Integration by parts is applied to integrate sin^(N+1). (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) & ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) & ⊢ 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) & ⊢ 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) & ⊢ 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) & ⊢ 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥)) | ||
Theorem | itgsinexp 44444* | A recursive formula for the integral of sin^N on the interval (0,π) . (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) ⇒ ⊢ (𝜑 → (𝐼‘𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2)))) | ||
Theorem | iblconstmpt 44445* | A constant function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | ||
Theorem | itgeq1d 44446* | Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
Theorem | mbfres2cn 44447 | Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. Similar to mbfres2 25091 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) & ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
Theorem | vol0 44448 | The measure of the empty set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (vol‘∅) = 0 | ||
Theorem | ditgeqiooicc 44449* | A function 𝐹 on an open interval, has the same directed integral as its extension 𝐺 on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥) | ||
Theorem | volge0 44450 | The volume of a set is always nonnegative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ dom vol → 0 ≤ (vol‘𝐴)) | ||
Theorem | cnbdibl 44451* | A continuous bounded function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → (vol‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | ||
Theorem | snmbl 44452 | A singleton is measurable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℝ → {𝐴} ∈ dom vol) | ||
Theorem | ditgeq3d 44453* | Equality theorem for the directed integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐷 = 𝐸) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐷 d𝑥 = ⨜[𝐴 → 𝐵]𝐸 d𝑥) | ||
Theorem | iblempty 44454 | The empty function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ∅ ∈ 𝐿1 | ||
Theorem | iblsplit 44455* | The union of two integrable functions is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) | ||
Theorem | volsn 44456 | A singleton has 0 Lebesgue measure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℝ → (vol‘{𝐴}) = 0) | ||
Theorem | itgvol0 44457* | If the domani is negligible, the function is integrable and the integral is 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ∧ ∫𝐴𝐵 d𝑥 = 0)) | ||
Theorem | itgcoscmulx 44458* | Exercise: the integral of 𝑥 ↦ cos𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴)) | ||
Theorem | iblsplitf 44459* | A version of iblsplit 44455 using bound-variable hypotheses instead of distinct variable conditions". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) | ||
Theorem | ibliooicc 44460* | If a function is integrable on an open interval, it is integrable on the corresponding closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) | ||
Theorem | volioc 44461 | The measure of a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | iblspltprt 44462* | If a function is integrable on any interval of a partition, then it is integrable on the whole interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑡𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → (𝑃‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) & ⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑃‘𝑀)[,](𝑃‘𝑁))) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑡 ∈ ((𝑃‘𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑡 ∈ ((𝑃‘𝑀)[,](𝑃‘𝑁)) ↦ 𝐴) ∈ 𝐿1) | ||
Theorem | itgsincmulx 44463* | Exercise: the integral of 𝑥 ↦ sin𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴)) | ||
Theorem | itgsubsticclem 44464* | lemma for itgsubsticc 44465. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) & ⊢ 𝐺 = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿)))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾[,]𝐿)–cn→ℂ)) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → 𝐾 ≤ 𝐿) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
Theorem | itgsubsticc 44465* | Integration by u-substitution. The main difference with respect to itgsubst 25495 is that here we consider the range of 𝐴(𝑥) to be in the closed interval (𝐾[,]𝐿). If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) & ⊢ (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ℝ) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
Theorem | itgioocnicc 44466* | The integral of a piecewise continuous function 𝐹 on an open interval is equal to the integral of the continuous function 𝐺, in the corresponding closed interval. 𝐺 is equal to 𝐹 on the open interval, but it is continuous at the two boundaries, also. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) & ⊢ (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴)) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐵)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐿1 ∧ ∫(𝐴[,]𝐵)(𝐺‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) | ||
Theorem | iblcncfioo 44467 | A continuous function 𝐹 on an open interval (𝐴(,)𝐵) with a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵 is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | ||
Theorem | itgspltprt 44468* | The ∫ integral splits on a given partition 𝑃. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → 𝑃:(𝑀...𝑁)⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) & ⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑃‘𝑀)[,](𝑃‘𝑁))) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑡 ∈ ((𝑃‘𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫((𝑃‘𝑀)[,](𝑃‘𝑁))𝐴 d𝑡 = Σ𝑖 ∈ (𝑀..^𝑁)∫((𝑃‘𝑖)[,](𝑃‘(𝑖 + 1)))𝐴 d𝑡) | ||
Theorem | itgiccshift 44469* | The integral of a function, 𝐹 stays the same if its closed interval domain is shifted by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ 𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥 − 𝑇))) ⇒ ⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | itgperiod 44470* | The integral of a periodic function, with period 𝑇 stays the same if the domain of integration is shifted. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | itgsbtaddcnst 44471* | Integral substitution, adding a constant to the function's argument. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → ⨜[(𝐴 − 𝑋) → (𝐵 − 𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴 → 𝐵](𝐹‘𝑡) d𝑡) | ||
Theorem | volico 44472 | The measure of left-closed, right-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | ||
Theorem | sublevolico 44473 | The Lebesgue measure of a left-closed, right-open interval is greater than or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) | ||
Theorem | dmvolss 44474 | Lebesgue measurable sets are subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ dom vol ⊆ 𝒫 ℝ | ||
Theorem | ismbl3 44475* | The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl2 24973, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥 ∩ 𝐴)) +𝑒 (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) | ||
Theorem | volioof 44476 | The function that assigns the Lebesgue measure to open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) | ||
Theorem | ovolsplit 44477 | The Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts, using addition for extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) | ||
Theorem | fvvolioof 44478 | The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))))) | ||
Theorem | volioore 44479 | The measure of an open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) | ||
Theorem | fvvolicof 44480 | The function value of the Lebesgue measure of a left-closed right-open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) | ||
Theorem | voliooico 44481 | An open interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) | ||
Theorem | ismbl4 44482* | The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl 24972, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) +𝑒 (vol*‘(𝑥 ∖ 𝐴))))) | ||
Theorem | volioofmpt 44483* | ((vol ∘ (,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥)))))) | ||
Theorem | volicoff 44484 | ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) | ||
Theorem | voliooicof 44485 | The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ)) ⇒ ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹)) | ||
Theorem | volicofmpt 44486* | ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))))) | ||
Theorem | volicc 44487 | The Lebesgue measure of a closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | voliccico 44488 | A closed interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵))) | ||
Theorem | mbfdmssre 44489 | The domain of a measurable function is a subset of the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ) | ||
Theorem | stoweidlem1 44490 | Lemma for stoweid 44552. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90; the key step uses Bernoulli's inequality bernneq 14174. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 1) & ⊢ (𝜑 → 𝐷 ≤ 𝐴) ⇒ ⊢ (𝜑 → ((1 − (𝐴↑𝑁))↑(𝐾↑𝑁)) ≤ (1 / ((𝐾 · 𝐷)↑𝑁))) | ||
Theorem | stoweidlem2 44491* | lemma for stoweid 44552: here we prove that the subalgebra of continuous functions, which contains constant functions, is closed under scaling. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ (𝐸 · (𝐹‘𝑡))) ∈ 𝐴) | ||
Theorem | stoweidlem3 44492* | Lemma for stoweid 44552: if 𝐴 is positive and all 𝑀 terms of a finite product are larger than 𝐴, then the finite product is larger than 𝐴↑𝑀. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐹 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝑋 = seq1( · , 𝐹) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)) | ||
Theorem | stoweidlem4 44493* | Lemma for stoweid 44552: a class variable replaces a setvar variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴) | ||
Theorem | stoweidlem5 44494* | There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇 ∖ 𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇 ∖ 𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑄 ⊆ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) ⇒ ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) | ||
Theorem | stoweidlem6 44495* | Lemma for stoweid 44552: two class variables replace two setvar variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡 𝑓 = 𝐹 & ⊢ Ⅎ𝑡 𝑔 = 𝐺 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝐺‘𝑡))) ∈ 𝐴) | ||
Theorem | stoweidlem7 44496* | This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on 𝑇 ∖ 𝑈, and qn > 1 - ε on 𝑉. Here it is proven that, for 𝑛 large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable 𝐴 is used to represent (k*δ) in the paper, and 𝐵 is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)) & ⊢ 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵↑𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 < 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ (1 / (𝐴↑𝑛)) < 𝐸)) | ||
Theorem | stoweidlem8 44497* | Lemma for stoweid 44552: two class variables replace two setvar variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝐺 ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴) | ||
Theorem | stoweidlem9 44498* | Lemma for stoweid 44552: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ (𝜑 → 𝑇 = ∅) & ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) | ||
Theorem | stoweidlem10 44499 | Lemma for stoweid 44552. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁)) | ||
Theorem | stoweidlem11 44500* | This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92 (at the top of page 92): this lemma proves that g(t) < ( j + 1 / 3 ) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑡 ∈ 𝑇) & ⊢ (𝜑 → 𝑗 ∈ (1...𝑁)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁)) → (𝑋‘𝑖):𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁)) → ((𝑋‘𝑖)‘𝑡) ≤ 1) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑋‘𝑖)‘𝑡) < (𝐸 / 𝑁)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |