HomeHome Metamath Proof Explorer
Theorem List (p. 445 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 44401-44500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremadh-minimp-imim1 44401 Derivation of imim1 83 ("left antimonotonicity of implication", theorem *2.06 of [WhiteheadRussell] p. 100) from adh-minimp 44395 and ax-mp 5. Polish prefix notation: CCpqCCqrCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
 
Theoremadh-minimp-ax2c 44402 Derivation of a commuted form of ax-2 7 from adh-minimp 44395 and ax-mp 5. Polish prefix notation: CCpqCCpCqrCpr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))
 
Theoremadh-minimp-ax2-lem4 44403 Fourth lemma for the derivation of ax-2 7 from adh-minimp 44395 and ax-mp 5. Polish prefix notation: CpCCqCprCqr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ((𝜓 → (𝜑𝜒)) → (𝜓𝜒)))
 
Theoremadh-minimp-ax2 44404 Derivation of ax-2 7 from adh-minimp 44395 and ax-mp 5. Polish prefix notation: CCpCqrCCpqCpr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
 
Theoremadh-minimp-idALT 44405 Derivation of id 22 (reflexivity of implication, PM *2.08 WhiteheadRussell p. 101) from adh-minimp-ax1 44400, adh-minimp-ax2 44404, and ax-mp 5. It uses the derivation written DD211 in D-notation. (See head comment for an explanation.) Polish prefix notation: Cpp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜑)
 
Theoremadh-minimp-pm2.43 44406 Derivation of pm2.43 56 WhiteheadRussell p. 106 (also called "hilbert" or "W") from adh-minimp-ax1 44400, adh-minimp-ax2 44404, and ax-mp 5. It uses the derivation written DD22D21 in D-notation. (See head comment for an explanation.) Polish prefix notation: CCpCpqCpq . (Contributed by BJ, 31-May-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜑𝜓)) → (𝜑𝜓))
 
20.41  Mathbox for Alexander van der Vekens
 
20.41.1  General auxiliary theorems (1)
 
20.41.1.1  Unordered and ordered pairs - extension for singletons
 
Theoremeusnsn 44407* There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022.)
∃!𝑥{𝑥} = {𝑦}
 
Theoremabsnsb 44408* If the class abstraction {𝑥𝜑} associated with the wff 𝜑 is a singleton, the wff is true for the singleton element. (Contributed by AV, 24-Aug-2022.)
({𝑥𝜑} = {𝑦} → [𝑦 / 𝑥]𝜑)
 
Theoremeuabsneu 44409* Another way to express existential uniqueness of a wff 𝜑: its associated class abstraction {𝑥𝜑} is a singleton. Variant of euabsn2 4658 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022.)
(∃!𝑥𝜑 ↔ ∃!𝑦{𝑥𝜑} = {𝑦})
 
20.41.1.2  Unordered and ordered pairs - extension for unordered pairs
 
Theoremelprneb 44410 An element of a proper unordered pair is the first element iff it is not the second element. (Contributed by AV, 18-Jun-2020.)
((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐵𝐶) → (𝐴 = 𝐵𝐴𝐶))
 
20.41.1.3  Unordered and ordered pairs - extension for ordered pairs
 
Theoremoppr 44411 Equality for ordered pairs implies equality of unordered pairs with the same elements. (Contributed by AV, 9-Jul-2023.)
((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴, 𝐵} = {𝐶, 𝐷}))
 
Theoremopprb 44412 Equality for unordered pairs corresponds to equality of unordered pairs with the same elements. (Contributed by AV, 9-Jul-2023.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐶⟩)))
 
Theoremor2expropbilem1 44413* Lemma 1 for or2expropbi 44415 and ich2exprop 44811. (Contributed by AV, 16-Jul-2023.)
((𝐴𝑋𝐵𝑋) → ((𝐴 = 𝑎𝐵 = 𝑏) → (𝜑 → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑))))
 
Theoremor2expropbilem2 44414* Lemma 2 for or2expropbi 44415 and ich2exprop 44811. (Contributed by AV, 16-Jul-2023.)
(∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑))
 
Theoremor2expropbi 44415* If two classes are strictly ordered, there is an ordered pair of both classes fulfilling a wff iff there is an unordered pair of both classes fulfilling the wff. (Contributed by AV, 26-Aug-2023.)
(((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → (∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏𝜑)) ↔ ∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝑅𝑏𝜑))))
 
20.41.1.4  Relations - extension
 
Theoremeubrv 44416* If there is a unique set which is related to a class, then the class must be a set. (Contributed by AV, 25-Aug-2022.)
(∃!𝑏 𝐴𝑅𝑏𝐴 ∈ V)
 
Theoremeubrdm 44417* If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022.)
(∃!𝑏 𝐴𝑅𝑏𝐴 ∈ dom 𝑅)
 
Theoremeldmressn 44418 Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
(𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴)
 
20.41.1.5  Definite description binder (inverted iota) - extension
 
Theoremiota0def 44419* Example for a defined iota being the empty set, i.e., 𝑦𝑥𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). (Contributed by AV, 24-Aug-2022.)
(℩𝑥𝑦 𝑥𝑦) = ∅
 
Theoremiota0ndef 44420* Example for an undefined iota being the empty set, i.e., 𝑦𝑦𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). (Contributed by AV, 24-Aug-2022.)
(℩𝑥𝑦 𝑦𝑥) = ∅
 
20.41.1.6  Functions - extension
 
Theoremfveqvfvv 44421 If a function's value at an argument is the universal class (which can never be the case because of fvex 6769), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 119). (Contributed by Alexander van der Vekens, 26-May-2017.)
((𝐹𝐴) = V → (𝐹𝐴) = 𝐵)
 
Theoremfnresfnco 44422 Composition of two functions, similar to fnco 6533. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
(((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → (𝐹𝐺) Fn 𝐵)
 
Theoremfuncoressn 44423 A composition restricted to a singleton is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun ((𝐹𝐺) ↾ {𝑋}))
 
Theoremfunressnfv 44424 A restriction to a singleton with a function value is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
(((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))
 
Theoremfunressndmfvrn 44425 The value of a function 𝐹 at a set 𝐴 is in the range of the function 𝐹 if 𝐴 is in the domain of the function 𝐹. It is sufficient that 𝐹 is a function at 𝐴. (Contributed by AV, 1-Sep-2022.)
((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
 
Theoremfunressnvmo 44426* A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.)
(Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦)
 
Theoremfunressnmo 44427* A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.)
((𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦)
 
Theoremfunressneu 44428* There is exactly one value of a class which is a function restricted to a singleton, analogous to funeu 6443. 𝐴 ∈ V is required because otherwise ∃!𝑦𝐴𝐹𝑦, see brprcneu 6747. (Contributed by AV, 7-Sep-2022.)
(((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
 
Theoremfresfo 44429 Conditions for a restriction to be an onto function. Part of fresf1o 30867. (Contributed by AV, 29-Sep-2024.)
((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–onto𝐶)
 
Theoremfsetsniunop 44430* The class of all functions from a (proper) singleton into 𝐵 is the union of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.)
(𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = 𝑏𝐵 {{⟨𝑆, 𝑏⟩}})
 
Theoremfsetabsnop 44431* The class of all functions from a (proper) singleton into 𝐵 is the class of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.)
(𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
 
Theoremfsetsnf 44432* The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.)
𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}    &   𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})       (𝑆𝑉𝐹:𝐵𝐴)
 
Theoremfsetsnf1 44433* The mapping of an element of a class to a singleton function is an injection. (Contributed by AV, 13-Sep-2024.)
𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}    &   𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})       (𝑆𝑉𝐹:𝐵1-1𝐴)
 
Theoremfsetsnfo 44434* The mapping of an element of a class to a singleton function is a surjection. (Contributed by AV, 13-Sep-2024.)
𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}    &   𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})       (𝑆𝑉𝐹:𝐵onto𝐴)
 
Theoremfsetsnf1o 44435* The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024.)
𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}    &   𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})       (𝑆𝑉𝐹:𝐵1-1-onto𝐴)
 
Theoremfsetsnprcnex 44436* The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.)
((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} ∉ V)
 
Theoremcfsetssfset 44437 The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024.)
𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}       𝐹 ⊆ {𝑓𝑓:𝐴𝐵}
 
Theoremcfsetsnfsetfv 44438* The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.)
𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}    &   𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}    &   𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))       ((𝐴𝑉𝑋𝐺) → (𝐻𝑋) = (𝑎𝐴 ↦ (𝑋𝑌)))
 
Theoremcfsetsnfsetf 44439* The mapping of the class of singleton functions into the class of constant functions is a function. (Contributed by AV, 14-Sep-2024.)
𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}    &   𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}    &   𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))       ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺𝐹)
 
Theoremcfsetsnfsetf1 44440* The mapping of the class of singleton functions into the class of constant functions is an injection. (Contributed by AV, 14-Sep-2024.)
𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}    &   𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}    &   𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))       ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺1-1𝐹)
 
Theoremcfsetsnfsetfo 44441* The mapping of the class of singleton functions into the class of constant functions is a surjection. (Contributed by AV, 14-Sep-2024.)
𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}    &   𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}    &   𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))       ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺onto𝐹)
 
Theoremcfsetsnfsetf1o 44442* The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024.)
𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}    &   𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}    &   𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))       ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺1-1-onto𝐹)
 
TheoremfsetprcnexALT 44443* First version of proof for fsetprcnex 8608, which was much more complicated. (Contributed by AV, 14-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
 
Theoremfcoreslem1 44444 Lemma 1 for fcores 44448. (Contributed by AV, 17-Sep-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)       (𝜑𝑃 = (𝐹𝐸))
 
Theoremfcoreslem2 44445 Lemma 2 for fcores 44448. (Contributed by AV, 17-Sep-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)    &   𝑋 = (𝐹𝑃)       (𝜑 → ran 𝑋 = 𝐸)
 
Theoremfcoreslem3 44446 Lemma 3 for fcores 44448. (Contributed by AV, 13-Sep-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)    &   𝑋 = (𝐹𝑃)       (𝜑𝑋:𝑃onto𝐸)
 
Theoremfcoreslem4 44447 Lemma 4 for fcores 44448. (Contributed by AV, 17-Sep-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)    &   𝑋 = (𝐹𝑃)    &   (𝜑𝐺:𝐶𝐷)    &   𝑌 = (𝐺𝐸)       (𝜑 → (𝑌𝑋) Fn 𝑃)
 
Theoremfcores 44448 Every composite function (𝐺𝐹) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)    &   𝑋 = (𝐹𝑃)    &   (𝜑𝐺:𝐶𝐷)    &   𝑌 = (𝐺𝐸)       (𝜑 → (𝐺𝐹) = (𝑌𝑋))
 
Theoremfcoresf1lem 44449 Lemma for fcoresf1 44450. (Contributed by AV, 18-Sep-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)    &   𝑋 = (𝐹𝑃)    &   (𝜑𝐺:𝐶𝐷)    &   𝑌 = (𝐺𝐸)       ((𝜑𝑍𝑃) → ((𝐺𝐹)‘𝑍) = (𝑌‘(𝑋𝑍)))
 
Theoremfcoresf1 44450 If a composition is injective, then the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 18-Sep-2024.) (Revised by AV, 7-Oct-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)    &   𝑋 = (𝐹𝑃)    &   (𝜑𝐺:𝐶𝐷)    &   𝑌 = (𝐺𝐸)    &   (𝜑 → (𝐺𝐹):𝑃1-1𝐷)       (𝜑 → (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷))
 
Theoremfcoresf1b 44451 A composition is injective iff the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 7-Oct-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)    &   𝑋 = (𝐹𝑃)    &   (𝜑𝐺:𝐶𝐷)    &   𝑌 = (𝐺𝐸)       (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷)))
 
Theoremfcoresfo 44452 If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)    &   𝑋 = (𝐹𝑃)    &   (𝜑𝐺:𝐶𝐷)    &   𝑌 = (𝐺𝐸)    &   (𝜑 → (𝐺𝐹):𝑃onto𝐷)       (𝜑𝑌:𝐸onto𝐷)
 
Theoremfcoresfob 44453 A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)    &   𝑋 = (𝐹𝑃)    &   (𝜑𝐺:𝐶𝐷)    &   𝑌 = (𝐺𝐸)       (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))
 
Theoremfcoresf1ob 44454 A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)    &   𝑋 = (𝐹𝑃)    &   (𝜑𝐺:𝐶𝐷)    &   𝑌 = (𝐺𝐸)       (𝜑 → ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷)))
 
Theoremf1cof1blem 44455 Lemma for f1cof1b 44456 and focofob 44459. (Contributed by AV, 18-Sep-2024.)
(𝜑𝐹:𝐴𝐵)    &   𝐸 = (ran 𝐹𝐶)    &   𝑃 = (𝐹𝐶)    &   𝑋 = (𝐹𝑃)    &   (𝜑𝐺:𝐶𝐷)    &   𝑌 = (𝐺𝐸)    &   (𝜑 → ran 𝐹 = 𝐶)       (𝜑 → ((𝑃 = 𝐴𝐸 = 𝐶) ∧ (𝑋 = 𝐹𝑌 = 𝐺)))
 
Theoremf1cof1b 44456 If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺𝐹) is injective iff 𝐹 and 𝐺 are both injective. (Contributed by GL and AV, 19-Sep-2024.)
((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷)))
 
Theoremfunfocofob 44457 If the domain of a function 𝐺 is a subset of the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.)
((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
 
Theoremfnfocofob 44458 If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.)
((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):𝐴onto𝐶𝐺:𝐵onto𝐶))
 
Theoremfocofob 44459 If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 and 𝐹 as function to the domain of 𝐺 are both surjective. Symmetric version of fnfocofob 44458 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 29-Sep-2024.)
((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷 ↔ (𝐹:𝐴onto𝐶𝐺:𝐶onto𝐷)))
 
Theoremf1ocof1ob 44460 If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.)
((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷)))
 
Theoremf1ocof1ob2 44461 If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. Symmetric version of f1ocof1ob 44460 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 7-Oct-2024.)
((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1-onto𝐶𝐺:𝐶1-1-onto𝐷)))
 
20.41.2  Alternative for Russell's definition of a description binder
 
Syntaxcaiota 44462 Extend class notation with an alternative for Russell's definition of a description binder (inverted iota).
class (℩'𝑥𝜑)
 
Theoremaiotajust 44463* Soundness justification theorem for df-aiota 44464. (Contributed by AV, 24-Aug-2022.)
{𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
 
Definitiondf-aiota 44464* Alternate version of Russell's definition of a description binder, which can be read as "the unique 𝑥 such that 𝜑", where 𝜑 ordinarily contains 𝑥 as a free variable. Our definition is meaningful only when there is exactly one 𝑥 such that 𝜑 is true (see aiotaval 44474); otherwise, it is not a set (see aiotaexb 44468), or even more concrete, it is the universe V (see aiotavb 44469). Since this is an alternative for df-iota 6376, we call this symbol ℩' alternate iota in the following.

The advantage of this definition is the clear distinguishability of the defined and undefined cases: the alternate iota over a wff is defined iff it is a set (see aiotaexb 44468). With the original definition, there is no corresponding theorem (∃!𝑥𝜑 ↔ (℩𝑥𝜑) ≠ ∅), because can be a valid unique set satisfying a wff (see, for example, iota0def 44419). Only the right to left implication would hold, see (negated) iotanul 6396. For defined cases, however, both definitions df-iota 6376 and df-aiota 44464 are equivalent, see reuaiotaiota 44467. (Proposed by BJ, 13-Aug-2022.) (Contributed by AV, 24-Aug-2022.)

(℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
 
Theoremdfaiota2 44465* Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in [Quine] p. 56. (Contributed by AV, 24-Aug-2022.)
(℩'𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
 
Theoremreuabaiotaiota 44466* The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique satisfying value of {𝑥𝜑} = {𝑦}. (Contributed by AV, 25-Aug-2022.)
(∃!𝑦{𝑥𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
 
Theoremreuaiotaiota 44467 The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.)
(∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
 
Theoremaiotaexb 44468 The alternate iota over a wff 𝜑 is a set iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.)
(∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)
 
Theoremaiotavb 44469 The alternate iota over a wff 𝜑 is the universe iff there is no unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.)
(¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V)
 
Theoremaiotaint 44470 This is to df-aiota 44464 what iotauni 6393 is to df-iota 6376 (it uses intersection like df-aiota 44464, similar to iotauni 6393 using union like df-iota 6376; we could also prove an analogous result using union here too, in the same way that we have iotaint 6394). (Contributed by BJ, 31-Aug-2024.)
(∃!𝑥𝜑 → (℩'𝑥𝜑) = {𝑥𝜑})
 
Theoremdfaiota3 44471 Alternate definition of ℩': this is to df-aiota 44464 what dfiota4 6410 is to df-iota 6376. operation using the if operator. It is simpler than df-aiota 44464 and uses no dummy variables, so it would be the preferred definition if ℩' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024.)
(℩'𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, V)
 
Theoremiotan0aiotaex 44472 If the iota over a wff 𝜑 is not empty, the alternate iota over 𝜑 is a set. (Contributed by AV, 25-Aug-2022.)
((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V)
 
Theoremaiotaexaiotaiota 44473 The alternate iota over a wff 𝜑 is a set iff the iota and the alternate iota over 𝜑 are equal. (Contributed by AV, 25-Aug-2022.)
((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
 
Theoremaiotaval 44474* Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022.)
(∀𝑥(𝜑𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦)
 
Theoremaiota0def 44475* Example for a defined alternate iota being the empty set, i.e., 𝑦𝑥𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). This corresponds to iota0def 44419. (Contributed by AV, 25-Aug-2022.)
(℩'𝑥𝑦 𝑥𝑦) = ∅
 
Theoremaiota0ndef 44476* Example for an undefined alternate iota being no set, i.e., 𝑦𝑦𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). This is different from iota0ndef 44420, where the iota still is a set (the empty set). (Contributed by AV, 25-Aug-2022.)
(℩'𝑥𝑦 𝑦𝑥) ∉ V
 
20.41.3  Double restricted existential uniqueness
 
20.41.3.1  Restricted quantification (extension)
 
Theoremr19.32 44477 Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, analogous to r19.32v 3267. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
𝑥𝜑       (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝐴 𝜓))
 
Theoremrexsb 44478* An equivalent expression for restricted existence, analogous to exsb 2357. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
(∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥(𝑥 = 𝑦𝜑))
 
Theoremrexrsb 44479* An equivalent expression for restricted existence, analogous to exsb 2357. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
(∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥𝐴 (𝑥 = 𝑦𝜑))
 
Theorem2rexsb 44480* An equivalent expression for double restricted existence, analogous to rexsb 44478. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
(∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
 
Theorem2rexrsb 44481* An equivalent expression for double restricted existence, analogous to 2exsb 2358. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
(∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
 
Theoremcbvral2 44482* Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvral2v 3388. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
𝑧𝜑    &   𝑥𝜒    &   𝑤𝜒    &   𝑦𝜓    &   (𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
 
Theoremcbvrex2 44483* Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvrex2v 3389. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
𝑧𝜑    &   𝑥𝜒    &   𝑤𝜒    &   𝑦𝜓    &   (𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
 
Theoremralndv1 44484 Example for a theorem about a restricted universal quantification in which the restricting class depends on (actually is) the bound variable: All sets containing themselves contain the universal class. (Contributed by AV, 24-Jun-2023.)
𝑥𝑥 V ∈ 𝑥
 
Theoremralndv2 44485 Second example for a theorem about a restricted universal quantification in which the restricting class depends on the bound variable: all subsets of a set are sets. (Contributed by AV, 24-Jun-2023.)
𝑥 ∈ 𝒫 𝑥𝑥 ∈ V
 
20.41.3.2  Restricted uniqueness and "at most one" quantification
 
Theoremreuf1odnf 44486* There is exactly one element in each of two isomorphic sets. Variant of reuf1od 44487 with no distinct variable condition for 𝜒. (Contributed by AV, 19-Mar-2023.)
(𝜑𝐹:𝐶1-1-onto𝐵)    &   ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))    &   (𝑥 = 𝑧 → (𝜓𝜃))    &   𝑥𝜒       (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
 
Theoremreuf1od 44487* There is exactly one element in each of two isomorphic sets. (Contributed by AV, 19-Mar-2023.)
(𝜑𝐹:𝐶1-1-onto𝐵)    &   ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
 
Theoremeuoreqb 44488* There is a set which is equal to one of two other sets iff the other sets are equal. (Contributed by AV, 24-Jan-2023.)
((𝐴𝑉𝐵𝑉) → (∃!𝑥𝑉 (𝑥 = 𝐴𝑥 = 𝐵) ↔ 𝐴 = 𝐵))
 
20.41.3.3  Analogs to Existential uniqueness (double quantification)
 
Theorem2reu3 44489* Double restricted existential uniqueness, analogous to 2eu3 2655. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
(∀𝑥𝐴𝑦𝐵 (∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑) → ((∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑) ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
 
Theorem2reu7 44490* Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu7 2659. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ ∃!𝑥𝐴 ∃!𝑦𝐵 (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
 
Theorem2reu8 44491* Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu8 2660. Curiously, we can put ∃! on either of the internal conjuncts but not both. We can also commute ∃!𝑥𝐴∃!𝑦𝐵 using 2reu7 44490. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
(∃!𝑥𝐴 ∃!𝑦𝐵 (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ ∃!𝑥𝐴 ∃!𝑦𝐵 (∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
 
20.41.3.4  Additional theorems for double restricted existential uniqueness
 
Theorem2reu8i 44492* Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification, see also 2reu8 44491. The involved wffs depend on the setvar variables as follows: ph(x,y), ta(v,y), ch(x,w), th(v,w), et(x,b), ps(a,b), ze(a,w). (Contributed by AV, 1-Apr-2023.)
(𝑥 = 𝑣 → (𝜑𝜏))    &   (𝑥 = 𝑣 → (𝜒𝜃))    &   (𝑦 = 𝑤 → (𝜑𝜒))    &   (𝑦 = 𝑏 → (𝜑𝜂))    &   (𝑥 = 𝑎 → (𝜒𝜁))    &   (((𝜒𝑦 = 𝑤) ∧ 𝜁) → 𝑦 = 𝑤)    &   ((𝑥 = 𝑎𝑦 = 𝑏) → (𝜑𝜓))       (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 → ∃𝑥𝐴𝑦𝐵 (𝜑 ∧ ∀𝑎𝐴𝑏𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓𝑎 = 𝑥)))))
 
Theorem2reuimp0 44493* Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification. The involved wffs depend on the setvar variables as follows: ph(a,b), th(a,c), ch(d,b), ta(d,c), et(a,e), ps(a,f) (Contributed by AV, 13-Mar-2023.)
(𝑏 = 𝑐 → (𝜑𝜃))    &   (𝑎 = 𝑑 → (𝜑𝜒))    &   (𝑎 = 𝑑 → (𝜃𝜏))    &   (𝑏 = 𝑒 → (𝜑𝜂))    &   (𝑐 = 𝑓 → (𝜃𝜓))       (∃!𝑎𝑉 ∃!𝑏𝑉 𝜑 → ∃𝑎𝑉𝑑𝑉𝑏𝑉𝑒𝑉𝑓𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓𝑒 = 𝑓)))
 
Theorem2reuimp 44494* Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification if the class of the quantified elements is not empty. (Contributed by AV, 13-Mar-2023.)
(𝑏 = 𝑐 → (𝜑𝜃))    &   (𝑎 = 𝑑 → (𝜑𝜒))    &   (𝑎 = 𝑑 → (𝜃𝜏))    &   (𝑏 = 𝑒 → (𝜑𝜂))    &   (𝑐 = 𝑓 → (𝜃𝜓))       ((𝑉 ≠ ∅ ∧ ∃!𝑎𝑉 ∃!𝑏𝑉 𝜑) → ∃𝑎𝑉𝑑𝑉𝑏𝑉𝑒𝑉𝑓𝑉𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓)))))
 
20.41.4  Alternative definitions of function and operation values

The current definition of the value (𝐹𝐴) of a function 𝐹 at an argument 𝐴 (see df-fv 6426) assures that this value is always a set, see fex 7084. This is because this definition can be applied to any classes 𝐹 and 𝐴, and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6786 and fvprc 6748).

Although it is very convenient for many theorems on functions and their proofs, there are some cases in which from (𝐹𝐴) = ∅ alone it cannot be decided/derived whether (𝐹𝐴) is meaningful (𝐹 is actually a function which is defined for 𝐴 and really has the function value at 𝐴) or not. Therefore, additional assumptions are required, such as ∅ ∉ ran 𝐹, ∅ ∈ ran 𝐹 or Fun 𝐹𝐴 ∈ dom 𝐹 (see, for example, ndmfvrcl 6787).

To avoid such an ambiguity, an alternative definition (𝐹'''𝐴) (see df-afv 44499) would be possible which evaluates to the universal class ((𝐹'''𝐴) = V) if it is not meaningful (see afvnfundmuv 44518, ndmafv 44519, afvprc 44523 and nfunsnafv 44521), and which corresponds to the current definition ((𝐹𝐴) = (𝐹'''𝐴)) if it is (see afvfundmfveq 44517). That means (𝐹'''𝐴) = V → (𝐹𝐴) = ∅ (see afvpcfv0 44525), but (𝐹𝐴) = ∅ → (𝐹'''𝐴) = V is not generally valid.

In the theory of partial functions, it is a common case that 𝐹 is not defined at 𝐴, which also would result in (𝐹'''𝐴) = V. In this context we say (𝐹'''𝐴) "is not defined" instead of "is not meaningful".

With this definition the following intuitive equivalence holds: (𝐹'''𝐴) ∈ V <-> "(𝐹'''𝐴) is meaningful/defined".

An interesting question would be if (𝐹𝐴) could be replaced by (𝐹'''𝐴) in most of the theorems based on function values. If we look at the (currently 19) proofs using the definition df-fv 6426 of (𝐹𝐴), we see that analogues for the following 8 theorems can be proven using the alternative definition: fveq1 6755-> afveq1 44513, fveq2 6756-> afveq2 44514, nffv 6766-> nfafv 44515, csbfv12 6799-> csbafv12g , fvres 6775-> afvres 44551, rlimdm 15188-> rlimdmafv 44556, tz6.12-1 6778-> tz6.12-1-afv 44553, fveu 6746-> afveu 44532.

Three theorems proved by directly using df-fv 6426 are within a mathbox (fvsb 41959) or not used (isumclim3 15399, avril1 28728).

However, the remaining 8 theorems proved by directly using df-fv 6426 are used more or less often:

* fvex 6769: used in about 1750 proofs.

* tz6.12-1 6778: root theorem of many theorems which have not a strict analogue, and which are used many times: fvprc 6748 (used in about 127 proofs), tz6.12i 6782 (used - indirectly via fvbr0 6783 and fvrn0 6784- in 18 proofs, and in fvclss 7097 used in fvclex 7775 used in fvresex 7776, which is not used!), dcomex 10134 (used in 4 proofs), ndmfv 6786 (used in 86 proofs) and nfunsn 6793 (used by dffv2 6845 which is not used).

* fv2 6751: only used by elfv 6754, which is only used by fv3 6774, which is not used.

* dffv3 6752: used by dffv4 6753 (the previous "df-fv"), which now is only used in deprecated (usage discouraged) theorems or within mathboxes (csbfv12gALTVD 42408), by shftval 14713 (itself used in 9 proofs), by dffv5 34153 (mathbox) and by fvco2 6847, which has the analogue afvco2 44555.

* fvopab5 6889: used only by ajval 29124 (not used) and by adjval 30153 (used - indirectly - in 9 proofs).

* zsum 15358: used (via isum 15359, sum0 15361 and fsumsers 15368) in more than 90 proofs.

* isumshft 15479: used in pserdv2 25494 and (via logtayl 25720) 4 other proofs.

* ovtpos 8028: used in 14 proofs.

As a result of this analysis we can say that the current definition of a function value is crucial for Metamath and cannot be exchanged easily with an alternative definition. While fv2 6751, dffv3 6752, fvopab5 6889, zsum 15358, isumshft 15479 and ovtpos 8028 are not critical or are, hopefully, also valid for the alternative definition, fvex 6769 and tz6.12-1 6778 (and the theorems based on them) are essential for the current definition of function values.

With the same arguments, an alternative definition of operation values ((𝐴𝑂𝐵)) could be meaningful to avoid ambiguities, see df-aov 44500.

For additional details, see https://groups.google.com/g/metamath/c/cteNUppB6A4 44500.

 
Syntaxwdfat 44495 Extend the definition of a wff to include the "defined at" predicate. Read: "(the function) 𝐹 is defined at (the argument) 𝐴". In a previous version, the token "def@" was used. However, since the @ is used (informally) as a replacement for $ in commented out sections that may be deleted some day. While there is no violation of any standard to use the @ in a token, it could make the search for such commented-out sections slightly more difficult. (See remark of Norman Megill at https://groups.google.com/g/metamath/c/cteNUppB6A4).
wff 𝐹 defAt 𝐴
 
Syntaxcafv 44496 Extend the definition of a class to include the value of a function. Read: "the value of 𝐹 at 𝐴 " or "𝐹 of 𝐴". In a previous version, the symbol " ' " was used. However, since the similarity with the symbol used for the current definition of a function's value (see df-fv 6426), which, by the way, was intended to visualize that in many cases and " ' " are exchangeable, makes reading the theorems, especially those which use both definitions as dfafv2 44511, very difficult, 3 apostrophes ''' are used now so that it's easier to distinguish from df-fv 6426 and df-ima 5593. And not three backticks ( three times ) since that would be annoying to escape in a comment. (See remark of Norman Megill and Gerard Lang at https://groups.google.com/g/metamath/c/cteNUppB6A4 5593).
class (𝐹'''𝐴)
 
Syntaxcaov 44497 Extend class notation to include the value of an operation 𝐹 (such as +) for two arguments 𝐴 and 𝐵. Note that the syntax is simply three class symbols in a row surrounded by a pair of parentheses in contrast to the current definition, see df-ov 7258.
class ((𝐴𝐹𝐵))
 
Definitiondf-dfat 44498 Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.)
(𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
 
Definitiondf-afv 44499* Alternative definition of the value of a function, (𝐹'''𝐴), also known as function application. In contrast to (𝐹𝐴) = ∅ (see df-fv 6426 and ndmfv 6786), (𝐹'''𝐴) = V if F is not defined for A! (Contributed by Alexander van der Vekens, 25-May-2017.) (Revised by BJ/AV, 25-Aug-2022.)
(𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥)
 
Definitiondf-aov 44500 Define the value of an operation. In contrast to df-ov 7258, the alternative definition for a function value (see df-afv 44499) is used. By this, the value of the operation applied to two arguments is the universal class if the operation is not defined for these two arguments. There are still no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. (Contributed by Alexander van der Vekens, 26-May-2017.)
((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >