![]() |
Metamath
Proof Explorer Theorem List (p. 445 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fourierdlem64 44401* | The partition 𝑉 is finer than 𝑄, when 𝑄 is moved on the same interval where 𝑉 lies. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝐿 = sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉‘𝐽)}, ℝ, < ) & ⊢ 𝐼 = sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄‘𝑗) + (𝐿 · 𝑇)) ≤ (𝑉‘𝐽)}, ℝ, < ) ⇒ ⊢ (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐿 ∈ ℤ) ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄‘𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))) | ||
Theorem | fourierdlem65 44402* | The distance of two adjacent points in the moved partition is preserved in the original partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝑍 = ((𝑆‘𝑗) + (𝐵 − (𝐸‘(𝑆‘𝑗)))) ⇒ ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) | ||
Theorem | fourierdlem66 44403* | Value of the 𝐺 function when the argument is not zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ 𝐴 = ((-π[,]π) ∖ {0}) ⇒ ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (𝐺‘𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)))) | ||
Theorem | fourierdlem67 44404* | 𝐺 is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) ⇒ ⊢ (𝜑 → 𝐺:(-π[,]π)⟶ℝ) | ||
Theorem | fourierdlem68 44405* | The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘𝑡)) ≤ 𝐷) & ⊢ (𝜑 → 𝐸 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ⇒ ⊢ (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)) | ||
Theorem | fourierdlem69 44406* | A piecewise continuous function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | ||
Theorem | fourierdlem70 44407* | A piecewise continuous function is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) & ⊢ (𝜑 → (𝑄‘0) = 𝐴) & ⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑠)) ≤ 𝑥) | ||
Theorem | fourierdlem71 44408* | A periodic piecewise continuous function, possibly undefined on a finite set in each periodic interval, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → dom 𝐹 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) & ⊢ (𝜑 → (𝑄‘0) = 𝐴) & ⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹) & ⊢ (((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) & ⊢ 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹‘𝑥)) ≤ 𝑦) | ||
Theorem | fourierdlem72 44409* | The derivative of 𝑂 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ (𝜑 → 𝑈 ∈ (0..^𝑀)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1)))) & ⊢ 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) & ⊢ 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) & ⊢ 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) ⇒ ⊢ (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ)) | ||
Theorem | fourierdlem73 44410* | A version of the Riemann Lebesgue lemma: as 𝑟 increases, the integral in 𝑆 goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) & ⊢ (𝜑 → (𝑄‘0) = 𝐴) & ⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ 𝐺 = (ℝ D 𝐹) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺‘𝑥)) ≤ 𝑦) & ⊢ 𝑆 = (𝑟 ∈ ℝ+ ↦ ∫(𝐴(,)𝐵)((𝐹‘𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) & ⊢ 𝐷 = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹‘𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒) | ||
Theorem | fourierdlem74 44411* | Given a piecewise smooth function 𝐹, the derived function 𝐻 has a limit at the upper bound of each interval of the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐺 = (ℝ D 𝐹) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) & ⊢ (𝜑 → 𝐸 ∈ ((𝐺 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ 𝐴 = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | ||
Theorem | fourierdlem75 44412* | Given a piecewise smooth function 𝐹, the derived function 𝐻 has a limit at the lower bound of each interval of the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐺 = (ℝ D 𝐹) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ) & ⊢ (𝜑 → 𝐸 ∈ ((𝐺 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = if((𝑉‘𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) | ||
Theorem | fourierdlem76 44413* | Continuity of 𝑂 and its limits with respect to the 𝑆 partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) & ⊢ 𝑁 = ((♯‘𝑇) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) & ⊢ 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) & ⊢ 𝐸 = (((if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) / (𝑆‘𝑗)) · ((𝑆‘𝑗) / (2 · (sin‘((𝑆‘𝑗) / 2))))) & ⊢ (𝜒 ↔ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) ⇒ ⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) ∧ (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))) | ||
Theorem | fourierdlem77 44414* | If 𝐻 is bounded, then 𝑈 is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ+ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈‘𝑠)) ≤ 𝑏) | ||
Theorem | fourierdlem78 44415* | 𝐺 is continuous when restricted on an interval not containing 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ (-π[,]π)) & ⊢ (𝜑 → 𝐵 ∈ (-π[,]π)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ)) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) ⇒ ⊢ (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ)) | ||
Theorem | fourierdlem79 44416* | 𝐸 projects every interval of the partition induced by 𝑆 on 𝐻 into a corresponding interval of the partition induced by 𝑄 on [𝐴, 𝐵]. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝑍 = ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐿‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) | ||
Theorem | fourierdlem80 44417* | The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) & ⊢ 𝐼 = ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) & ⊢ (𝜑 → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵)) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) & ⊢ (((𝜑 ∧ 𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ 𝐼)):𝐼⟶ℝ) & ⊢ 𝑌 = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏) | ||
Theorem | fourierdlem81 44418* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by its period 𝑇. In this lemma, 𝑇 is assumed to be strictly positive. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ 𝐺 = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) & ⊢ 𝐻 = (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ (𝐺‘(𝑥 − 𝑇))) ⇒ ⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem82 44419* | Integral by substitution, adding a constant to the function's argument, for a function on an open interval with finite limits ad boundary points. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) & ⊢ (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝐹‘𝑡) d𝑡 = ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) | ||
Theorem | fourierdlem83 44420* | The fourier partial sum for 𝐹 rewritten as an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐶 = (-π(,)π) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ 𝐿1) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑆‘𝑁) = ∫𝐶((𝐹‘𝑥) · ((𝐷‘𝑁)‘(𝑥 − 𝑋))) d𝑥) | ||
Theorem | fourierdlem84 44421* | If 𝐹 is piecewise coninuous and 𝐷 is continuous, then 𝐺 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐷 ∈ (ℝ–cn→ℝ)) & ⊢ 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷‘𝑠))) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐿1) | ||
Theorem | fourierdlem85 44422* | Limit of the function 𝐺 at the lower bounds of the partition intervals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐼 = (ℝ D 𝐹) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ) & ⊢ (𝜑 → 𝐸 ∈ ((𝐼 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = ((if((𝑉‘𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) · (𝑆‘(𝑄‘𝑖))) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) | ||
Theorem | fourierdlem86 44423* | Continuity of 𝑂 and its limits with respect to the 𝑆 partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) & ⊢ 𝑁 = ((♯‘𝑇) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) & ⊢ 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), ⦋𝑈 / 𝑖⦌𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) & ⊢ 𝐸 = (((if((𝑆‘𝑗) = (𝑄‘𝑈), ⦋𝑈 / 𝑖⦌𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) / (𝑆‘𝑗)) · ((𝑆‘𝑗) / (2 · (sin‘((𝑆‘𝑗) / 2))))) & ⊢ 𝑈 = (℩𝑖 ∈ (0..^𝑀)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ⇒ ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) ∧ (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))) | ||
Theorem | fourierdlem87 44424* | The integral of 𝐺 goes uniformly ( with respect to 𝑛) to zero if the measure of the domain of integration goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑥) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1) & ⊢ 𝐷 = ((𝑒 / 3) / 𝑎) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺‘𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ)) ⇒ ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈‘𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) | ||
Theorem | fourierdlem88 44425* | Given a piecewise continuous function 𝐹, a continuous function 𝐾 and a continuous function 𝑆, the function 𝐺 is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐼 = (ℝ D 𝐹) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ((𝐼 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐷 ∈ ((𝐼 ↾ (𝑋(,)+∞)) limℂ 𝑋)) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐿1) | ||
Theorem | fourierdlem89 44426* | Given a piecewise continuous function and changing the interval and the partition, the limit at the lower bound of each interval of the moved partition is still finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}, ℝ, < )) & ⊢ 𝑉 = (𝑖 ∈ (0..^𝑀) ↦ 𝑅) ⇒ ⊢ (𝜑 → if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), (𝐹‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) ∈ ((𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) limℂ (𝑆‘𝐽))) | ||
Theorem | fourierdlem90 44427* | Given a piecewise continuous function, it is still continuous with respect to an open interval of the moved partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) & ⊢ 𝐺 = (𝐹 ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) & ⊢ 𝑅 = (𝑦 ∈ (((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ↦ (𝐺‘(𝑦 − 𝑈))) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ (𝜑 → (𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) ∈ (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))–cn→ℂ)) | ||
Theorem | fourierdlem91 44428* | Given a piecewise continuous function and changing the interval and the partition, the limit at the upper bound of each interval of the moved partition is still finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}, ℝ, < )) & ⊢ 𝑊 = (𝑖 ∈ (0..^𝑀) ↦ 𝐿) ⇒ ⊢ (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) limℂ (𝑆‘(𝐽 + 1)))) | ||
Theorem | fourierdlem92 44429* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by its period 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) & ⊢ 𝐻 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem93 44430* | Integral by substitution (the domain is shifted by 𝑋) for a piecewise continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(-π[,]π)⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∫(-π[,]π)(𝐹‘𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠) | ||
Theorem | fourierdlem94 44431* | For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ≠ ∅) ⇒ ⊢ (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠ ∅)) | ||
Theorem | fourierdlem95 44432* | Algebraic manipulation of integrals, used by other lemmas. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ 𝐼 = (ℝ D 𝐹) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) & ⊢ (𝜑 → 𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 𝐴 ⊆ ((-π[,]π) ∖ {0})) & ⊢ 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺‘𝑠) d𝑠 / π)) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ (𝜑 → 𝑂 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫𝐴((𝐷‘𝑛)‘𝑠) d𝑠 = (1 / 2)) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐸‘𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) | ||
Theorem | fourierdlem96 44433* | limit for 𝐹 at the lower bound of an interval for the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ (𝜑 → 𝐽 ∈ (0..^((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))) & ⊢ 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ℎ ∈ ℤ (𝑦 + (ℎ · 𝑇)) ∈ ran 𝑄}))) ⇒ ⊢ (𝜑 → if(((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘𝐽))) = (𝑄‘((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉‘𝐽))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉‘𝐽))), (𝐹‘((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘𝐽))))) ∈ ((𝐹 ↾ ((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))) limℂ (𝑉‘𝐽))) | ||
Theorem | fourierdlem97 44434* | 𝐹 is continuous on the intervals induced by the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐺 = (ℝ D 𝐹) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ (𝜑 → 𝐽 ∈ (0..^((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))) & ⊢ 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ℎ ∈ ℤ (𝑦 + (ℎ · 𝑇)) ∈ ran 𝑄}))) & ⊢ 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺‘𝑠), 0)) ⇒ ⊢ (𝜑 → (𝐺 ↾ ((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ)) | ||
Theorem | fourierdlem98 44435* | 𝐹 is continuous on the intervals induced by the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ (𝜑 → 𝐽 ∈ (0..^((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))) & ⊢ 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ℎ ∈ ℤ (𝑦 + (ℎ · 𝑇)) ∈ ran 𝑄}))) ⇒ ⊢ (𝜑 → (𝐹 ↾ ((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ)) | ||
Theorem | fourierdlem99 44436* | limit for 𝐹 at the upper bound of an interval for the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ (𝜑 → 𝐽 ∈ (0..^((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))) & ⊢ 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ℎ ∈ ℤ (𝑦 + (ℎ · 𝑇)) ∈ ran 𝑄}))) ⇒ ⊢ (𝜑 → if(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) = (𝑄‘(((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉‘𝐽)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉‘𝐽))), (𝐹‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))) limℂ (𝑉‘(𝐽 + 1)))) | ||
Theorem | fourierdlem100 44437* | A piecewise continuous function is integrable on any closed interval. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹‘𝑥)) ∈ 𝐿1) | ||
Theorem | fourierdlem101 44438* | Integral by substitution for a piecewise continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐺 = (𝑡 ∈ (-π[,]π) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(-π[,]π)⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∫(-π[,]π)((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠)) d𝑠) | ||
Theorem | fourierdlem102 44439* | For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐻 = ({-π, π, (𝐸‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) & ⊢ 𝑀 = ((♯‘𝐻) − 1) & ⊢ 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻)) ⇒ ⊢ (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠ ∅)) | ||
Theorem | fourierdlem103 44440* | The half lower part of the integral equal to the fourier partial sum, converges to half the left limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹‘𝑡)) ≤ 𝑤) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑚)‘𝑠)) d𝑠) & ⊢ 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺‘𝑠) d𝑠 / π)) & ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ 𝑂 = (𝑈 ↾ (-π[,]𝑑)) & ⊢ 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) & ⊢ 𝑁 = ((♯‘𝑇) − 1) & ⊢ 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝐶 = (℩𝑙 ∈ (0..^𝑀)((𝐽‘𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘𝑙)(,)(𝑄‘(𝑙 + 1)))) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈‘𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈‘𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) ⇒ ⊢ (𝜑 → 𝑍 ⇝ (𝑊 / 2)) | ||
Theorem | fourierdlem104 44441* | The half upper part of the integral equal to the fourier partial sum, converges to half the right limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹‘𝑡)) ≤ 𝑤) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑚)‘𝑠)) d𝑠) & ⊢ 𝐸 = (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺‘𝑠) d𝑠 / π)) & ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ 𝑂 = (𝑈 ↾ (𝑑[,]π)) & ⊢ 𝑇 = ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) & ⊢ 𝑁 = ((♯‘𝑇) − 1) & ⊢ 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝐶 = (℩𝑙 ∈ (0..^𝑀)((𝐽‘𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘𝑙)(,)(𝑄‘(𝑙 + 1)))) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈‘𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈‘𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) ⇒ ⊢ (𝜑 → 𝑍 ⇝ (𝑌 / 2)) | ||
Theorem | fourierdlem105 44442* | A piecewise continuous function is integrable on any closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹‘𝑥)) ∈ 𝐿1) | ||
Theorem | fourierdlem106 44443* | For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠ ∅)) | ||
Theorem | fourierdlem107 44444* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 44429 where the integral was shifted by the exact period. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({(𝐴 − 𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem108 44445* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 44429 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem109 44446* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 44429 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem110 44447* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 44429 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem111 44448* | The fourier partial sum for 𝐹 is the sum of two integrals, with the same integrand involving 𝐹 and the Dirichlet Kernel 𝐷, but on two opposite intervals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑡) · (cos‘(𝑛 · 𝑡))) d𝑡 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑡) · (sin‘(𝑛 · 𝑡))) d𝑡 / π)) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ 𝑇 = (2 · π) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝‘𝑚) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑊 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑆‘𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠)) | ||
Theorem | fourierdlem112 44449* | Here abbreviations (local definitions) are introduced to prove the fourier 44456 theorem. (𝑍‘𝑚) is the mth partial sum of the fourier series. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ 𝑁 = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) & ⊢ 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ (𝜑 → 𝐸 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐼 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑍 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))))) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) & ⊢ (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹‘𝑡)) ≤ 𝑤) & ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) | ||
Theorem | fourierdlem113 44450* | Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ≠ ∅) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))) & ⊢ (𝜑 → (𝐸‘𝑋) ∈ ran 𝑄) ⇒ ⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) | ||
Theorem | fourierdlem114 44451* | Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐻 = ({-π, π, (𝐸‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) & ⊢ 𝑀 = ((♯‘𝐻) − 1) & ⊢ 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻)) ⇒ ⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) | ||
Theorem | fourierdlem115 44452* | Fourier serier convergence, for piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) ⇒ ⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) | ||
Theorem | fourierd 44453* | Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 44457. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 44458 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 44463. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)) | ||
Theorem | fourierclimd 44454* | Fourier series convergence, for piecewise smooth functions. See fourierd 44453 for the analogous Σ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) ⇒ ⊢ (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) | ||
Theorem | fourierclim 44455* | Fourier series convergence, for piecewise smooth functions. See fourier 44456 for the analogous Σ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹:ℝ⟶ℝ & ⊢ 𝑇 = (2 · π) & ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin & ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) & ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ 𝑋 ∈ ℝ & ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) & ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) ⇒ ⊢ seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) | ||
Theorem | fourier 44456* | Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 44457. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 44458 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 44463. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹:ℝ⟶ℝ & ⊢ 𝑇 = (2 · π) & ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin & ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) & ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ 𝑋 ∈ ℝ & ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) & ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2) | ||
Theorem | fouriercnp 44457* | If 𝐹 is continuous at the point 𝑋, then its Fourier series at 𝑋, converges to (𝐹‘𝑋). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) | ||
Theorem | fourier2 44458* | Fourier series convergence, for a piecewise smooth function. Here it is also proven the existence of the left and right limits of 𝐹 at any given point 𝑋. See fourierd 44453 for a comparison. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (𝜑 → ∃𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2)) | ||
Theorem | sqwvfoura 44459* | Fourier coefficients for the square wave function. Since the square function is an odd function, there is no contribution from the 𝐴 coefficients. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑇 = (2 · π) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0) | ||
Theorem | sqwvfourb 44460* | Fourier series 𝐵 coefficients for the square wave function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑇 = (2 · π) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π)))) | ||
Theorem | fourierswlem 44461* | The Fourier series for the square wave 𝐹 converges to 𝑌, a simpler expression for this special case. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑇 = (2 · π) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) & ⊢ 𝑋 ∈ ℝ & ⊢ 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) ⇒ ⊢ 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) | ||
Theorem | fouriersw 44462* | Fourier series convergence, for the square wave function. Where 𝐹 is discontinuous, the series converges to 0, the average value of the left and the right limits. Notice that 𝐹 is an odd function and its Fourier expansion has only sine terms (coefficients for cosine terms are zero). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑇 = (2 · π) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) & ⊢ 𝑋 ∈ ℝ & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))) & ⊢ 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) ⇒ ⊢ (((4 / π) · Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) = 𝑌 ∧ seq1( + , 𝑆) ⇝ ((π / 4) · 𝑌)) | ||
Theorem | fouriercn 44463* | If the derivative of 𝐹 is continuous, then the Fourier series for 𝐹 converges to 𝐹 everywhere and the hypothesis are simpler than those for the more general case of a piecewise smooth function (see fourierd 44453 for a comparison). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) | ||
Theorem | elaa2lem 44464* | Elementhood in the set of nonzero algebraic numbers. ' Only if ' part of elaa2 44465. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 1-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝔸) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ (𝜑 → (𝐺‘𝐴) = 0) & ⊢ 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) & ⊢ 𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀))) & ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼‘𝑘) · (𝑧↑𝑘))) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓‘𝐴) = 0)) | ||
Theorem | elaa2 44465* | Elementhood in the set of nonzero algebraic numbers: when 𝐴 is nonzero, the polynomial 𝑓 can be chosen with a nonzero constant term. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 1-Oct-2020.) |
⊢ (𝐴 ∈ (𝔸 ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓‘𝐴) = 0))) | ||
Theorem | etransclem1 44466* | 𝐻 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) ⇒ ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) | ||
Theorem | etransclem2 44467* | Derivative of 𝐺. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) ⇒ ⊢ (𝜑 → (ℝ D 𝐺) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥))) | ||
Theorem | etransclem3 44468 | The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) ⇒ ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) | ||
Theorem | etransclem4 44469* | 𝐹 expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐸 = (𝑥 ∈ 𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻‘𝑗)‘𝑥)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐸) | ||
Theorem | etransclem5 44470* | A change of bound variable, often used in proofs for etransc 44514. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) | ||
Theorem | etransclem6 44471* | A change of bound variable, often used in proofs for etransc 44514. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦 − 𝑘)↑𝑃))) | ||
Theorem | etransclem7 44472* | The given product is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) ⇒ ⊢ (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))))) ∈ ℤ) | ||
Theorem | etransclem8 44473* | 𝐹 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | ||
Theorem | etransclem9 44474 | If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀 then 𝑀 + 𝑁 cannot be zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ≠ 0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝐾 ∥ 𝑁) ⇒ ⊢ (𝜑 → (𝑀 + 𝑁) ≠ 0) | ||
Theorem | etransclem10 44475 | The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ) | ||
Theorem | etransclem11 44476* | A change of bound variable, often used in proofs for etransc 44514. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) | ||
Theorem | etransclem12 44477* | 𝐶 applied to 𝑁. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) | ||
Theorem | etransclem13 44478* | 𝐹 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹‘𝑌) = ∏𝑗 ∈ (0...𝑀)((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) | ||
Theorem | etransclem14 44479* | Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶‘𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))))))) & ⊢ (𝜑 → 𝐽 = 0) & ⊢ (𝜑 → (𝐶‘0) = (𝑃 − 1)) ⇒ ⊢ (𝜑 → 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶‘𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · (-𝑗↑(𝑃 − (𝐶‘𝑗)))))))) | ||
Theorem | etransclem15 44480* | Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶‘𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))))))) & ⊢ (𝜑 → 𝐽 = 0) & ⊢ (𝜑 → (𝐶‘0) ≠ (𝑃 − 1)) ⇒ ⊢ (𝜑 → 𝑇 = 0) | ||
Theorem | etransclem16 44481* | Every element in the range of 𝐶 is a finite set. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) | ||
Theorem | etransclem17 44482* | The 𝑁-th derivative of 𝐻. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))) | ||
Theorem | etransclem18 44483* | The given function is integrable. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) & ⊢ (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥))) ∈ 𝐿1) | ||
Theorem | etransclem19 44484* | The 𝑁-th derivative of 𝐻 is 0 if 𝑁 is large enough. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) | ||
Theorem | etransclem20 44485* | 𝐻 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁):𝑋⟶ℂ) | ||
Theorem | etransclem21 44486* | The 𝑁-th derivative of 𝐻 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁)‘𝑌) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) | ||
Theorem | etransclem22 44487* | The 𝑁-th derivative of 𝐻 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) ∈ (𝑋–cn→ℂ)) | ||
Theorem | etransclem23 44488* | This is the claim proof in [Juillerat] p. 14 (but in our proof, Stirling's approximation is not used). (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℤ) & ⊢ 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) & ⊢ 𝐾 = (𝐿 / (!‘(𝑃 − 1))) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴‘𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1) ⇒ ⊢ (𝜑 → (abs‘𝐾) < 1) | ||
Theorem | etransclem24 44489* | 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. when 𝐽 = 0 and 𝐼 is not equal to 𝑃 − 1. This is the second part of case 2 proven in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ≠ (𝑃 − 1)) & ⊢ (𝜑 → 𝐽 = 0) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝐷 ∈ (𝐶‘𝐼)) ⇒ ⊢ (𝜑 → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1)))) | ||
Theorem | etransclem25 44490* | 𝑃 factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐶‘𝑗) = 𝑁) & ⊢ 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶‘𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))))))) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑀)) ⇒ ⊢ (𝜑 → (!‘𝑃) ∥ 𝑇) | ||
Theorem | etransclem26 44491* | Every term in the sum of the 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝐷 ∈ (𝐶‘𝑁)) ⇒ ⊢ (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) ∈ ℤ) | ||
Theorem | etransclem27 44492* | The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ (𝜑 → 𝐶:dom 𝐶⟶(ℕ0 ↑m (0...𝑀))) & ⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ Σ𝑙 ∈ dom 𝐶∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝑥)) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐺‘𝐽) ∈ ℤ) | ||
Theorem | etransclem28 44493* | (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝐷 ∈ (𝐶‘𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) ⇒ ⊢ (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇) | ||
Theorem | etransclem29 44494* | The 𝑁-th derivative of 𝐹. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ 𝐸 = (𝑥 ∈ 𝑋 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻‘𝑗)‘𝑥)) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)))) | ||
Theorem | etransclem30 44495* | The 𝑁-th derivative of 𝐹. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)))) | ||
Theorem | etransclem31 44496* | The 𝑁-th derivative of 𝐻 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) | ||
Theorem | etransclem32 44497* | This is the proof for the last equation in the proof of the derivative calculated in [Juillerat] p. 12, just after equation *(6) . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) | ||
Theorem | etransclem33 44498* | 𝐹 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):𝑋⟶ℂ) | ||
Theorem | etransclem34 44499* | The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑛}) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋–cn→ℂ)) | ||
Theorem | etransclem35 44500* | 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is case 2 of the proof in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ 𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0)) ⇒ ⊢ (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗↑𝑃))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |