| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr1 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6083 frfi 9169 wemappo 9435 iccsplit 13385 ccatswrd 14576 sqrmo 15158 pcdvdstr 16788 vdwlem12 16904 mreexexlem4d 17553 iscatd2 17587 oppccomfpropd 17633 resssetc 17999 resscatc 18016 mod1ile 18399 mod2ile 18400 prdssgrpd 18641 prdsmndd 18678 grprcan 18886 submomnd 20045 ogrpaddltbi 20052 prdsrngd 20095 prdsringd 20240 lmodprop2d 20858 lssintcl 20898 prdslmodd 20903 islmhm2 20973 islbs3 21093 ofco2 22367 mdetmul 22539 restopnb 23091 regsep2 23292 iunconn 23344 blsscls2 24420 met2ndci 24438 xrsblre 24728 nosupbnd1lem5 27652 conway 27741 addsass 27949 mulscom 28079 legso 28578 colline 28628 tglowdim2ln 28630 cgrahl 28806 f1otrg 28850 f1otrge 28851 ax5seglem4 28911 ax5seglem5 28912 axcontlem4 28946 axcontlem8 28950 axcontlem9 28951 axcontlem10 28952 eengtrkg 28965 rusgrnumwwlks 29953 frgr3v 30253 lmhmimasvsca 33018 erdszelem8 35240 elmrsubrn 35562 btwncomim 36053 btwnswapid 36057 broutsideof3 36166 outsideoftr 36169 outsidele 36172 isbasisrelowllem1 37395 isbasisrelowllem2 37396 cvrletrN 39318 ltltncvr 39468 atcvrj2b 39477 2at0mat0 39570 paddasslem11 39875 pmod1i 39893 lautcvr 40137 tendoplass 40828 tendodi1 40829 tendodi2 40830 cdlemk34 40955 mendassa 43229 grumnud 44325 3adantlr3 45083 ssinc 45130 ssdec 45131 ioondisj2 45539 ioondisj1 45540 subsubelfzo0 47363 ply1mulgsumlem2 48425 lincresunit3lem2 48518 catprs 49049 fthcomf 49195 oppcthinco 49477 oppcthinendcALT 49479 |
| Copyright terms: Public domain | W3C validator |