| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr1 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6130 frfi 9298 wemappo 9568 iccsplit 13507 ccatswrd 14691 sqrmo 15275 pcdvdstr 16901 vdwlem12 17017 mreexexlem4d 17664 iscatd2 17698 oppccomfpropd 17744 resssetc 18110 resscatc 18127 mod1ile 18508 mod2ile 18509 prdssgrpd 18716 prdsmndd 18753 grprcan 18961 prdsrngd 20141 prdsringd 20286 lmodprop2d 20886 lssintcl 20926 prdslmodd 20931 islmhm2 21001 islbs3 21121 ofco2 22394 mdetmul 22566 restopnb 23118 regsep2 23319 iunconn 23371 blsscls2 24448 met2ndci 24466 xrsblre 24756 nosupbnd1lem5 27681 conway 27768 addsass 27969 mulscom 28099 legso 28583 colline 28633 tglowdim2ln 28635 cgrahl 28811 f1otrg 28855 f1otrge 28856 ax5seglem4 28916 ax5seglem5 28917 axcontlem4 28951 axcontlem8 28955 axcontlem9 28956 axcontlem10 28957 eengtrkg 28970 rusgrnumwwlks 29961 frgr3v 30261 lmhmimasvsca 33039 submomnd 33083 ogrpaddltbi 33091 erdszelem8 35225 elmrsubrn 35547 btwncomim 36036 btwnswapid 36040 broutsideof3 36149 outsideoftr 36152 outsidele 36155 isbasisrelowllem1 37378 isbasisrelowllem2 37379 cvrletrN 39296 ltltncvr 39447 atcvrj2b 39456 2at0mat0 39549 paddasslem11 39854 pmod1i 39872 lautcvr 40116 tendoplass 40807 tendodi1 40808 tendodi2 40809 cdlemk34 40934 mendassa 43189 grumnud 44285 3adantlr3 45044 ssinc 45091 ssdec 45092 ioondisj2 45502 ioondisj1 45503 subsubelfzo0 47335 ply1mulgsumlem2 48343 lincresunit3lem2 48436 catprs 48966 fthcomf 49077 oppcthinco 49305 oppcthinendcALT 49307 |
| Copyright terms: Public domain | W3C validator |