|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > simplr1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| simplr1 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: soltmin 6155 frfi 9322 wemappo 9590 iccsplit 13526 ccatswrd 14707 sqrmo 15291 pcdvdstr 16915 vdwlem12 17031 mreexexlem4d 17691 iscatd2 17725 oppccomfpropd 17771 resssetc 18138 resscatc 18155 mod1ile 18539 mod2ile 18540 prdssgrpd 18747 prdsmndd 18784 grprcan 18992 prdsrngd 20174 prdsringd 20319 lmodprop2d 20923 lssintcl 20963 prdslmodd 20968 islmhm2 21038 islbs3 21158 ofco2 22458 mdetmul 22630 restopnb 23184 regsep2 23385 iunconn 23437 blsscls2 24518 met2ndci 24536 xrsblre 24834 nosupbnd1lem5 27758 conway 27845 addsass 28039 mulscom 28166 legso 28608 colline 28658 tglowdim2ln 28660 cgrahl 28836 f1otrg 28880 f1otrge 28881 ax5seglem4 28948 ax5seglem5 28949 axcontlem4 28983 axcontlem8 28987 axcontlem9 28988 axcontlem10 28989 eengtrkg 29002 rusgrnumwwlks 29995 frgr3v 30295 lmhmimasvsca 33045 submomnd 33088 ogrpaddltbi 33096 erdszelem8 35204 elmrsubrn 35526 btwncomim 36015 btwnswapid 36019 broutsideof3 36128 outsideoftr 36131 outsidele 36134 isbasisrelowllem1 37357 isbasisrelowllem2 37358 cvrletrN 39275 ltltncvr 39426 atcvrj2b 39435 2at0mat0 39528 paddasslem11 39833 pmod1i 39851 lautcvr 40095 tendoplass 40786 tendodi1 40787 tendodi2 40788 cdlemk34 40913 mendassa 43207 grumnud 44310 3adantlr3 45050 ssinc 45097 ssdec 45098 ioondisj2 45511 ioondisj1 45512 subsubelfzo0 47343 ply1mulgsumlem2 48309 lincresunit3lem2 48402 catprs 48915 oppcthinco 49113 oppcthinendcALT 49115 | 
| Copyright terms: Public domain | W3C validator |