| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr1 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6089 frfi 9190 wemappo 9460 iccsplit 13406 ccatswrd 14593 sqrmo 15176 pcdvdstr 16806 vdwlem12 16922 mreexexlem4d 17571 iscatd2 17605 oppccomfpropd 17651 resssetc 18017 resscatc 18034 mod1ile 18417 mod2ile 18418 prdssgrpd 18625 prdsmndd 18662 grprcan 18870 submomnd 20029 ogrpaddltbi 20036 prdsrngd 20079 prdsringd 20224 lmodprop2d 20845 lssintcl 20885 prdslmodd 20890 islmhm2 20960 islbs3 21080 ofco2 22354 mdetmul 22526 restopnb 23078 regsep2 23279 iunconn 23331 blsscls2 24408 met2ndci 24426 xrsblre 24716 nosupbnd1lem5 27640 conway 27728 addsass 27935 mulscom 28065 legso 28562 colline 28612 tglowdim2ln 28614 cgrahl 28790 f1otrg 28834 f1otrge 28835 ax5seglem4 28895 ax5seglem5 28896 axcontlem4 28930 axcontlem8 28934 axcontlem9 28935 axcontlem10 28936 eengtrkg 28949 rusgrnumwwlks 29937 frgr3v 30237 lmhmimasvsca 33006 erdszelem8 35173 elmrsubrn 35495 btwncomim 35989 btwnswapid 35993 broutsideof3 36102 outsideoftr 36105 outsidele 36108 isbasisrelowllem1 37331 isbasisrelowllem2 37332 cvrletrN 39254 ltltncvr 39405 atcvrj2b 39414 2at0mat0 39507 paddasslem11 39812 pmod1i 39830 lautcvr 40074 tendoplass 40765 tendodi1 40766 tendodi2 40767 cdlemk34 40892 mendassa 43166 grumnud 44262 3adantlr3 45021 ssinc 45068 ssdec 45069 ioondisj2 45478 ioondisj1 45479 subsubelfzo0 47314 ply1mulgsumlem2 48376 lincresunit3lem2 48469 catprs 49000 fthcomf 49146 oppcthinco 49428 oppcthinendcALT 49430 |
| Copyright terms: Public domain | W3C validator |