Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplr1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr1 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | 1 | ad2antlr 723 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: soltmin 6038 frfi 9020 wemappo 9269 iccsplit 13199 ccatswrd 14362 sqrmo 14944 pcdvdstr 16558 vdwlem12 16674 mreexexlem4d 17337 iscatd2 17371 oppccomfpropd 17419 resssetc 17788 resscatc 17805 mod1ile 18192 mod2ile 18193 prdsmndd 18399 grprcan 18594 prdsringd 19832 lmodprop2d 20166 lssintcl 20207 prdslmodd 20212 islmhm2 20281 islbs3 20398 ofco2 21581 mdetmul 21753 restopnb 22307 regsep2 22508 iunconn 22560 blsscls2 23641 met2ndci 23659 xrsblre 23955 legso 26941 colline 26991 tglowdim2ln 26993 cgrahl 27169 f1otrg 27213 f1otrge 27214 ax5seglem4 27281 ax5seglem5 27282 axcontlem4 27316 axcontlem8 27320 axcontlem9 27321 axcontlem10 27322 eengtrkg 27335 rusgrnumwwlks 28318 frgr3v 28618 submomnd 31315 ogrpaddltbi 31323 erdszelem8 33139 elmrsubrn 33461 nosupbnd1lem5 33894 conway 33972 btwncomim 34294 btwnswapid 34298 broutsideof3 34407 outsideoftr 34410 outsidele 34413 isbasisrelowllem1 35505 isbasisrelowllem2 35506 cvrletrN 37266 ltltncvr 37416 atcvrj2b 37425 2at0mat0 37518 paddasslem11 37823 pmod1i 37841 lautcvr 38085 tendoplass 38776 tendodi1 38777 tendodi2 38778 cdlemk34 38903 mendassa 40999 grumnud 41857 3adantlr3 42537 ssinc 42590 ssdec 42591 ioondisj2 42985 ioondisj1 42986 subsubelfzo0 44770 ply1mulgsumlem2 45680 lincresunit3lem2 45773 catprs 46244 |
Copyright terms: Public domain | W3C validator |