| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr1 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6109 frfi 9232 wemappo 9502 iccsplit 13446 ccatswrd 14633 sqrmo 15217 pcdvdstr 16847 vdwlem12 16963 mreexexlem4d 17608 iscatd2 17642 oppccomfpropd 17688 resssetc 18054 resscatc 18071 mod1ile 18452 mod2ile 18453 prdssgrpd 18660 prdsmndd 18697 grprcan 18905 prdsrngd 20085 prdsringd 20230 lmodprop2d 20830 lssintcl 20870 prdslmodd 20875 islmhm2 20945 islbs3 21065 ofco2 22338 mdetmul 22510 restopnb 23062 regsep2 23263 iunconn 23315 blsscls2 24392 met2ndci 24410 xrsblre 24700 nosupbnd1lem5 27624 conway 27711 addsass 27912 mulscom 28042 legso 28526 colline 28576 tglowdim2ln 28578 cgrahl 28754 f1otrg 28798 f1otrge 28799 ax5seglem4 28859 ax5seglem5 28860 axcontlem4 28894 axcontlem8 28898 axcontlem9 28899 axcontlem10 28900 eengtrkg 28913 rusgrnumwwlks 29904 frgr3v 30204 lmhmimasvsca 32980 submomnd 33024 ogrpaddltbi 33032 erdszelem8 35185 elmrsubrn 35507 btwncomim 36001 btwnswapid 36005 broutsideof3 36114 outsideoftr 36117 outsidele 36120 isbasisrelowllem1 37343 isbasisrelowllem2 37344 cvrletrN 39266 ltltncvr 39417 atcvrj2b 39426 2at0mat0 39519 paddasslem11 39824 pmod1i 39842 lautcvr 40086 tendoplass 40777 tendodi1 40778 tendodi2 40779 cdlemk34 40904 mendassa 43179 grumnud 44275 3adantlr3 45034 ssinc 45081 ssdec 45082 ioondisj2 45491 ioondisj1 45492 subsubelfzo0 47327 ply1mulgsumlem2 48376 lincresunit3lem2 48469 catprs 49000 fthcomf 49146 oppcthinco 49428 oppcthinendcALT 49430 |
| Copyright terms: Public domain | W3C validator |