Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplr1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr1 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | 1 | ad2antlr 725 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: soltmin 6056 frfi 9103 wemappo 9352 iccsplit 13263 ccatswrd 14426 sqrmo 15008 pcdvdstr 16622 vdwlem12 16738 mreexexlem4d 17401 iscatd2 17435 oppccomfpropd 17483 resssetc 17852 resscatc 17869 mod1ile 18256 mod2ile 18257 prdsmndd 18463 grprcan 18658 prdsringd 19896 lmodprop2d 20230 lssintcl 20271 prdslmodd 20276 islmhm2 20345 islbs3 20462 ofco2 21645 mdetmul 21817 restopnb 22371 regsep2 22572 iunconn 22624 blsscls2 23705 met2ndci 23723 xrsblre 24019 legso 27005 colline 27055 tglowdim2ln 27057 cgrahl 27233 f1otrg 27277 f1otrge 27278 ax5seglem4 27345 ax5seglem5 27346 axcontlem4 27380 axcontlem8 27384 axcontlem9 27385 axcontlem10 27386 eengtrkg 27399 rusgrnumwwlks 28384 frgr3v 28684 submomnd 31381 ogrpaddltbi 31389 erdszelem8 33205 elmrsubrn 33527 nosupbnd1lem5 33960 conway 34038 btwncomim 34360 btwnswapid 34364 broutsideof3 34473 outsideoftr 34476 outsidele 34479 isbasisrelowllem1 35570 isbasisrelowllem2 35571 cvrletrN 37329 ltltncvr 37479 atcvrj2b 37488 2at0mat0 37581 paddasslem11 37886 pmod1i 37904 lautcvr 38148 tendoplass 38839 tendodi1 38840 tendodi2 38841 cdlemk34 38966 mendassa 41057 grumnud 41942 3adantlr3 42622 ssinc 42675 ssdec 42676 ioondisj2 43080 ioondisj1 43081 subsubelfzo0 44876 ply1mulgsumlem2 45786 lincresunit3lem2 45879 catprs 46350 |
Copyright terms: Public domain | W3C validator |