![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr1 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | 1 | ad2antlr 726 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: soltmin 6168 frfi 9349 wemappo 9618 iccsplit 13545 ccatswrd 14716 sqrmo 15300 pcdvdstr 16923 vdwlem12 17039 mreexexlem4d 17705 iscatd2 17739 oppccomfpropd 17787 resssetc 18159 resscatc 18176 mod1ile 18563 mod2ile 18564 prdssgrpd 18771 prdsmndd 18805 grprcan 19013 prdsrngd 20203 prdsringd 20344 lmodprop2d 20944 lssintcl 20985 prdslmodd 20990 islmhm2 21060 islbs3 21180 ofco2 22478 mdetmul 22650 restopnb 23204 regsep2 23405 iunconn 23457 blsscls2 24538 met2ndci 24556 xrsblre 24852 nosupbnd1lem5 27775 conway 27862 addsass 28056 mulscom 28183 legso 28625 colline 28675 tglowdim2ln 28677 cgrahl 28853 f1otrg 28897 f1otrge 28898 ax5seglem4 28965 ax5seglem5 28966 axcontlem4 29000 axcontlem8 29004 axcontlem9 29005 axcontlem10 29006 eengtrkg 29019 rusgrnumwwlks 30007 frgr3v 30307 lmhmimasvsca 33025 submomnd 33060 ogrpaddltbi 33068 erdszelem8 35166 elmrsubrn 35488 btwncomim 35977 btwnswapid 35981 broutsideof3 36090 outsideoftr 36093 outsidele 36096 isbasisrelowllem1 37321 isbasisrelowllem2 37322 cvrletrN 39229 ltltncvr 39380 atcvrj2b 39389 2at0mat0 39482 paddasslem11 39787 pmod1i 39805 lautcvr 40049 tendoplass 40740 tendodi1 40741 tendodi2 40742 cdlemk34 40867 mendassa 43151 grumnud 44255 3adantlr3 44940 ssinc 44989 ssdec 44990 ioondisj2 45411 ioondisj1 45412 subsubelfzo0 47241 ply1mulgsumlem2 48116 lincresunit3lem2 48209 catprs 48678 |
Copyright terms: Public domain | W3C validator |