| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr1 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6087 frfi 9176 wemappo 9442 iccsplit 13387 ccatswrd 14578 sqrmo 15160 pcdvdstr 16790 vdwlem12 16906 mreexexlem4d 17555 iscatd2 17589 oppccomfpropd 17635 resssetc 18001 resscatc 18018 mod1ile 18401 mod2ile 18402 prdssgrpd 18643 prdsmndd 18680 grprcan 18888 submomnd 20046 ogrpaddltbi 20053 prdsrngd 20096 prdsringd 20241 lmodprop2d 20859 lssintcl 20899 prdslmodd 20904 islmhm2 20974 islbs3 21094 ofco2 22367 mdetmul 22539 restopnb 23091 regsep2 23292 iunconn 23344 blsscls2 24420 met2ndci 24438 xrsblre 24728 nosupbnd1lem5 27652 conway 27741 addsass 27949 mulscom 28079 legso 28578 colline 28628 tglowdim2ln 28630 cgrahl 28806 f1otrg 28850 f1otrge 28851 ax5seglem4 28912 ax5seglem5 28913 axcontlem4 28947 axcontlem8 28951 axcontlem9 28952 axcontlem10 28953 eengtrkg 28966 rusgrnumwwlks 29957 frgr3v 30257 lmhmimasvsca 33027 erdszelem8 35263 elmrsubrn 35585 btwncomim 36078 btwnswapid 36082 broutsideof3 36191 outsideoftr 36194 outsidele 36197 isbasisrelowllem1 37420 isbasisrelowllem2 37421 cvrletrN 39393 ltltncvr 39543 atcvrj2b 39552 2at0mat0 39645 paddasslem11 39950 pmod1i 39968 lautcvr 40212 tendoplass 40903 tendodi1 40904 tendodi2 40905 cdlemk34 41030 mendassa 43308 grumnud 44404 3adantlr3 45162 ssinc 45209 ssdec 45210 ioondisj2 45618 ioondisj1 45619 subsubelfzo0 47451 ply1mulgsumlem2 48513 lincresunit3lem2 48606 catprs 49137 fthcomf 49283 oppcthinco 49565 oppcthinendcALT 49567 |
| Copyright terms: Public domain | W3C validator |