Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3impcombi | Structured version Visualization version GIF version |
Description: A 1-hypothesis propositional calculus deduction. (Contributed by Alan Sare, 25-Sep-2017.) |
Ref | Expression |
---|---|
3impcombi.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
3impcombi | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impcombi.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → (𝜒 ↔ 𝜃)) | |
2 | 1 | biimpd 228 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → (𝜒 → 𝜃)) |
3 | 2 | 3anidm13 1418 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 3 | ancoms 458 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜒 → 𝜃)) |
5 | 4 | 3impia 1115 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: isosctrlem1ALT 42443 |
Copyright terms: Public domain | W3C validator |