|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3impcombi | Structured version Visualization version GIF version | ||
| Description: A 1-hypothesis propositional calculus deduction. (Contributed by Alan Sare, 25-Sep-2017.) | 
| Ref | Expression | 
|---|---|
| 3impcombi.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → (𝜒 ↔ 𝜃)) | 
| Ref | Expression | 
|---|---|
| 3impcombi | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3impcombi.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpd 229 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → (𝜒 → 𝜃)) | 
| 3 | 2 | 3anidm13 1422 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | 
| 4 | 3 | ancoms 458 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜒 → 𝜃)) | 
| 5 | 4 | 3impia 1118 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: isosctrlem1ALT 44954 | 
| Copyright terms: Public domain | W3C validator |