Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isosctrlem1ALT | Structured version Visualization version GIF version |
Description: Lemma for isosctr 25971. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 25971. As it is verified by the Metamath program, isosctrlem1ALT 42554 verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 42554. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isosctrlem1ALT | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10929 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) |
3 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
4 | 2, 3 | subcld 11332 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 − 𝐴) ∈ ℂ) |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ) |
6 | subeq0 11247 | . . . . . . . . . . 11 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) | |
7 | 6 | biimpd 228 | . . . . . . . . . 10 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴)) |
8 | 7 | idiALT 42097 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴)) |
9 | 1, 3, 8 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 → 1 = 𝐴)) |
10 | 9 | con3d 152 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → ¬ (1 − 𝐴) = 0)) |
11 | df-ne 2944 | . . . . . . . 8 ⊢ ((1 − 𝐴) ≠ 0 ↔ ¬ (1 − 𝐴) = 0) | |
12 | 11 | biimpri 227 | . . . . . . 7 ⊢ (¬ (1 − 𝐴) = 0 → (1 − 𝐴) ≠ 0) |
13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → (1 − 𝐴) ≠ 0)) |
14 | 13 | imp 407 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0) |
15 | 5, 14 | logcld 25726 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ) |
16 | 15 | imcld 14906 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ) |
17 | 16 | 3adant2 1130 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ) |
18 | pire 25615 | . . . . 5 ⊢ π ∈ ℝ | |
19 | 2re 12047 | . . . . 5 ⊢ 2 ∈ ℝ | |
20 | 2ne0 12077 | . . . . 5 ⊢ 2 ≠ 0 | |
21 | 18, 19, 20 | redivcli 11742 | . . . 4 ⊢ (π / 2) ∈ ℝ |
22 | 21 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (π / 2) ∈ ℝ) |
23 | 18 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → π ∈ ℝ) |
24 | neghalfpirx 25623 | . . . 4 ⊢ -(π / 2) ∈ ℝ* | |
25 | 21 | rexri 11033 | . . . 4 ⊢ (π / 2) ∈ ℝ* |
26 | 3 | recld 14905 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
27 | 26 | recnd 11003 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
28 | 27 | subidd 11320 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0) |
29 | 28 | adantr 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0) |
30 | 1re 10975 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
31 | 30 | a1i 11 | . . . . . . . . 9 ⊢ (1 ∈ ℂ → 1 ∈ ℝ) |
32 | 1, 31 | ax-mp 5 | . . . . . . . 8 ⊢ 1 ∈ ℝ |
33 | 3 | releabsd 15163 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
34 | 33 | adantr 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
35 | id 22 | . . . . . . . . . 10 ⊢ ((abs‘𝐴) = 1 → (abs‘𝐴) = 1) | |
36 | 35 | adantl 482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1) |
37 | 34, 36 | breqtrd 5100 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ 1) |
38 | lesub1 11469 | . . . . . . . . . 10 ⊢ (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((ℜ‘𝐴) ≤ 1 ↔ ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))) | |
39 | 38 | 3impcombi 42437 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))) |
40 | 39 | idiALT 42097 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))) |
41 | 32, 26, 37, 40 | mp3an2ani 1467 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))) |
42 | 29, 41 | eqbrtrrd 5098 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (1 − (ℜ‘𝐴))) |
43 | 32 | a1i 11 | . . . . . . . . . . 11 ⊢ (⊤ → 1 ∈ ℝ) |
44 | 43 | rered 14935 | . . . . . . . . . 10 ⊢ (⊤ → (ℜ‘1) = 1) |
45 | 44 | mptru 1546 | . . . . . . . . 9 ⊢ (ℜ‘1) = 1 |
46 | oveq1 7282 | . . . . . . . . . 10 ⊢ ((ℜ‘1) = 1 → ((ℜ‘1) − (ℜ‘𝐴)) = (1 − (ℜ‘𝐴))) | |
47 | 46 | eqcomd 2744 | . . . . . . . . 9 ⊢ ((ℜ‘1) = 1 → (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))) |
48 | 45, 47 | ax-mp 5 | . . . . . . . 8 ⊢ (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)) |
49 | resub 14838 | . . . . . . . . . . 11 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))) | |
50 | 49 | eqcomd 2744 | . . . . . . . . . 10 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴))) |
51 | 50 | idiALT 42097 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴))) |
52 | 1, 3, 51 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴))) |
53 | 48, 52 | eqtrid 2790 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴))) |
54 | 53 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴))) |
55 | 42, 54 | breqtrd 5100 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (ℜ‘(1 − 𝐴))) |
56 | argrege0 25766 | . . . . . . 7 ⊢ (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) | |
57 | 56 | 3coml 1126 | . . . . . 6 ⊢ (((1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ∈ ℂ) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) |
58 | 57 | 3com13 1123 | . . . . 5 ⊢ (((1 − 𝐴) ∈ ℂ ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) |
59 | 4, 55, 14, 58 | eel12131 42333 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) |
60 | iccleub 13134 | . . . 4 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) | |
61 | 24, 25, 59, 60 | mp3an12i 1464 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) |
62 | pipos 25617 | . . . . . 6 ⊢ 0 < π | |
63 | 18, 62 | elrpii 12733 | . . . . 5 ⊢ π ∈ ℝ+ |
64 | rphalflt 12759 | . . . . 5 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
65 | 63, 64 | ax-mp 5 | . . . 4 ⊢ (π / 2) < π |
66 | 65 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (π / 2) < π) |
67 | 17, 22, 23, 61, 66 | lelttrd 11133 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) < π) |
68 | 17, 67 | ltned 11111 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 − cmin 11205 -cneg 11206 / cdiv 11632 2c2 12028 ℝ+crp 12730 [,]cicc 13082 ℜcre 14808 ℑcim 14809 abscabs 14945 πcpi 15776 logclog 25710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-sin 15779 df-cos 15780 df-pi 15782 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-limc 25030 df-dv 25031 df-log 25712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |