Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isosctrlem1ALT Structured version   Visualization version   GIF version

Theorem isosctrlem1ALT 43197
Description: Lemma for isosctr 26169. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26169. As it is verified by the Metamath program, isosctrlem1ALT 43197 verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 43197. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
isosctrlem1ALT ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)

Proof of Theorem isosctrlem1ALT
StepHypRef Expression
1 ax-1cn 11108 . . . . . . . 8 1 ∈ ℂ
21a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → 1 ∈ ℂ)
3 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
42, 3subcld 11511 . . . . . 6 (𝐴 ∈ ℂ → (1 − 𝐴) ∈ ℂ)
54adantr 481 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ)
6 subeq0 11426 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
76biimpd 228 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴))
87idiALT 42740 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴))
91, 3, 8sylancr 587 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 → 1 = 𝐴))
109con3d 152 . . . . . . 7 (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → ¬ (1 − 𝐴) = 0))
11 df-ne 2944 . . . . . . . 8 ((1 − 𝐴) ≠ 0 ↔ ¬ (1 − 𝐴) = 0)
1211biimpri 227 . . . . . . 7 (¬ (1 − 𝐴) = 0 → (1 − 𝐴) ≠ 0)
1310, 12syl6 35 . . . . . 6 (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → (1 − 𝐴) ≠ 0))
1413imp 407 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
155, 14logcld 25924 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ)
1615imcld 15079 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
17163adant2 1131 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
18 pire 25813 . . . . 5 π ∈ ℝ
19 2re 12226 . . . . 5 2 ∈ ℝ
20 2ne0 12256 . . . . 5 2 ≠ 0
2118, 19, 20redivcli 11921 . . . 4 (π / 2) ∈ ℝ
2221a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (π / 2) ∈ ℝ)
2318a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → π ∈ ℝ)
24 neghalfpirx 25821 . . . 4 -(π / 2) ∈ ℝ*
2521rexri 11212 . . . 4 (π / 2) ∈ ℝ*
263recld 15078 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2726recnd 11182 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
2827subidd 11499 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
2928adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
30 1re 11154 . . . . . . . . . 10 1 ∈ ℝ
3130a1i 11 . . . . . . . . 9 (1 ∈ ℂ → 1 ∈ ℝ)
321, 31ax-mp 5 . . . . . . . 8 1 ∈ ℝ
333releabsd 15335 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴))
3433adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ (abs‘𝐴))
35 id 22 . . . . . . . . . 10 ((abs‘𝐴) = 1 → (abs‘𝐴) = 1)
3635adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
3734, 36breqtrd 5131 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ 1)
38 lesub1 11648 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((ℜ‘𝐴) ≤ 1 ↔ ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))))
39383impcombi 43080 . . . . . . . . 9 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
4039idiALT 42740 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
4132, 26, 37, 40mp3an2ani 1468 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
4229, 41eqbrtrrd 5129 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (1 − (ℜ‘𝐴)))
4332a1i 11 . . . . . . . . . . 11 (⊤ → 1 ∈ ℝ)
4443rered 15108 . . . . . . . . . 10 (⊤ → (ℜ‘1) = 1)
4544mptru 1548 . . . . . . . . 9 (ℜ‘1) = 1
46 oveq1 7363 . . . . . . . . . 10 ((ℜ‘1) = 1 → ((ℜ‘1) − (ℜ‘𝐴)) = (1 − (ℜ‘𝐴)))
4746eqcomd 2742 . . . . . . . . 9 ((ℜ‘1) = 1 → (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)))
4845, 47ax-mp 5 . . . . . . . 8 (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))
49 resub 15011 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)))
5049eqcomd 2742 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5150idiALT 42740 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
521, 3, 51sylancr 587 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5348, 52eqtrid 2788 . . . . . . 7 (𝐴 ∈ ℂ → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5453adantr 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5542, 54breqtrd 5131 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (ℜ‘(1 − 𝐴)))
56 argrege0 25964 . . . . . . 7 (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
57563coml 1127 . . . . . 6 (((1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ∈ ℂ) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
58573com13 1124 . . . . 5 (((1 − 𝐴) ∈ ℂ ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
594, 55, 14, 58eel12131 42976 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
60 iccleub 13318 . . . 4 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2))
6124, 25, 59, 60mp3an12i 1465 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2))
62 pipos 25815 . . . . . 6 0 < π
6318, 62elrpii 12917 . . . . 5 π ∈ ℝ+
64 rphalflt 12943 . . . . 5 (π ∈ ℝ+ → (π / 2) < π)
6563, 64ax-mp 5 . . . 4 (π / 2) < π
6665a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (π / 2) < π)
6717, 22, 23, 61, 66lelttrd 11312 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) < π)
6817, 67ltned 11290 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wtru 1542  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7356  cc 11048  cr 11049  0cc0 11050  1c1 11051  *cxr 11187   < clt 11188  cle 11189  cmin 11384  -cneg 11385   / cdiv 11811  2c2 12207  +crp 12914  [,]cicc 13266  cre 14981  cim 14982  abscabs 15118  πcpi 15948  logclog 25908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-inf2 9576  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127  ax-pre-sup 11128  ax-addf 11129  ax-mulf 11130
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-of 7616  df-om 7802  df-1st 7920  df-2nd 7921  df-supp 8092  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8647  df-map 8766  df-pm 8767  df-ixp 8835  df-en 8883  df-dom 8884  df-sdom 8885  df-fin 8886  df-fsupp 9305  df-fi 9346  df-sup 9377  df-inf 9378  df-oi 9445  df-card 9874  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-div 11812  df-nn 12153  df-2 12215  df-3 12216  df-4 12217  df-5 12218  df-6 12219  df-7 12220  df-8 12221  df-9 12222  df-n0 12413  df-z 12499  df-dec 12618  df-uz 12763  df-q 12873  df-rp 12915  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13267  df-ioc 13268  df-ico 13269  df-icc 13270  df-fz 13424  df-fzo 13567  df-fl 13696  df-mod 13774  df-seq 13906  df-exp 13967  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14951  df-cj 14983  df-re 14984  df-im 14985  df-sqrt 15119  df-abs 15120  df-limsup 15352  df-clim 15369  df-rlim 15370  df-sum 15570  df-ef 15949  df-sin 15951  df-cos 15952  df-pi 15954  df-struct 17018  df-sets 17035  df-slot 17053  df-ndx 17065  df-base 17083  df-ress 17112  df-plusg 17145  df-mulr 17146  df-starv 17147  df-sca 17148  df-vsca 17149  df-ip 17150  df-tset 17151  df-ple 17152  df-ds 17154  df-unif 17155  df-hom 17156  df-cco 17157  df-rest 17303  df-topn 17304  df-0g 17322  df-gsum 17323  df-topgen 17324  df-pt 17325  df-prds 17328  df-xrs 17383  df-qtop 17388  df-imas 17389  df-xps 17391  df-mre 17465  df-mrc 17466  df-acs 17468  df-mgm 18496  df-sgrp 18545  df-mnd 18556  df-submnd 18601  df-mulg 18871  df-cntz 19095  df-cmn 19562  df-psmet 20786  df-xmet 20787  df-met 20788  df-bl 20789  df-mopn 20790  df-fbas 20791  df-fg 20792  df-cnfld 20795  df-top 22241  df-topon 22258  df-topsp 22280  df-bases 22294  df-cld 22368  df-ntr 22369  df-cls 22370  df-nei 22447  df-lp 22485  df-perf 22486  df-cn 22576  df-cnp 22577  df-haus 22664  df-tx 22911  df-hmeo 23104  df-fil 23195  df-fm 23287  df-flim 23288  df-flf 23289  df-xms 23671  df-ms 23672  df-tms 23673  df-cncf 24239  df-limc 25228  df-dv 25229  df-log 25910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator