Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isosctrlem1ALT Structured version   Visualization version   GIF version

Theorem isosctrlem1ALT 43998
Description: Lemma for isosctr 26559. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26559. As it is verified by the Metamath program, isosctrlem1ALT 43998 verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 43998. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
isosctrlem1ALT ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)

Proof of Theorem isosctrlem1ALT
StepHypRef Expression
1 ax-1cn 11171 . . . . . . . 8 1 ∈ ℂ
21a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → 1 ∈ ℂ)
3 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
42, 3subcld 11576 . . . . . 6 (𝐴 ∈ ℂ → (1 − 𝐴) ∈ ℂ)
54adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ)
6 subeq0 11491 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
76biimpd 228 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴))
87idiALT 43541 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴))
91, 3, 8sylancr 586 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 → 1 = 𝐴))
109con3d 152 . . . . . . 7 (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → ¬ (1 − 𝐴) = 0))
11 df-ne 2940 . . . . . . . 8 ((1 − 𝐴) ≠ 0 ↔ ¬ (1 − 𝐴) = 0)
1211biimpri 227 . . . . . . 7 (¬ (1 − 𝐴) = 0 → (1 − 𝐴) ≠ 0)
1310, 12syl6 35 . . . . . 6 (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → (1 − 𝐴) ≠ 0))
1413imp 406 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
155, 14logcld 26312 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ)
1615imcld 15147 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
17163adant2 1130 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
18 pire 26201 . . . . 5 π ∈ ℝ
19 2re 12291 . . . . 5 2 ∈ ℝ
20 2ne0 12321 . . . . 5 2 ≠ 0
2118, 19, 20redivcli 11986 . . . 4 (π / 2) ∈ ℝ
2221a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (π / 2) ∈ ℝ)
2318a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → π ∈ ℝ)
24 neghalfpirx 26209 . . . 4 -(π / 2) ∈ ℝ*
2521rexri 11277 . . . 4 (π / 2) ∈ ℝ*
263recld 15146 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2726recnd 11247 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
2827subidd 11564 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
2928adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
30 1re 11219 . . . . . . . . . 10 1 ∈ ℝ
3130a1i 11 . . . . . . . . 9 (1 ∈ ℂ → 1 ∈ ℝ)
321, 31ax-mp 5 . . . . . . . 8 1 ∈ ℝ
333releabsd 15403 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴))
3433adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ (abs‘𝐴))
35 id 22 . . . . . . . . . 10 ((abs‘𝐴) = 1 → (abs‘𝐴) = 1)
3635adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
3734, 36breqtrd 5175 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ 1)
38 lesub1 11713 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((ℜ‘𝐴) ≤ 1 ↔ ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))))
39383impcombi 43881 . . . . . . . . 9 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
4039idiALT 43541 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
4132, 26, 37, 40mp3an2ani 1467 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
4229, 41eqbrtrrd 5173 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (1 − (ℜ‘𝐴)))
4332a1i 11 . . . . . . . . . . 11 (⊤ → 1 ∈ ℝ)
4443rered 15176 . . . . . . . . . 10 (⊤ → (ℜ‘1) = 1)
4544mptru 1547 . . . . . . . . 9 (ℜ‘1) = 1
46 oveq1 7419 . . . . . . . . . 10 ((ℜ‘1) = 1 → ((ℜ‘1) − (ℜ‘𝐴)) = (1 − (ℜ‘𝐴)))
4746eqcomd 2737 . . . . . . . . 9 ((ℜ‘1) = 1 → (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)))
4845, 47ax-mp 5 . . . . . . . 8 (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))
49 resub 15079 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)))
5049eqcomd 2737 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5150idiALT 43541 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
521, 3, 51sylancr 586 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5348, 52eqtrid 2783 . . . . . . 7 (𝐴 ∈ ℂ → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5453adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5542, 54breqtrd 5175 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (ℜ‘(1 − 𝐴)))
56 argrege0 26352 . . . . . . 7 (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
57563coml 1126 . . . . . 6 (((1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ∈ ℂ) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
58573com13 1123 . . . . 5 (((1 − 𝐴) ∈ ℂ ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
594, 55, 14, 58eel12131 43777 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
60 iccleub 13384 . . . 4 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2))
6124, 25, 59, 60mp3an12i 1464 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2))
62 pipos 26203 . . . . . 6 0 < π
6318, 62elrpii 12982 . . . . 5 π ∈ ℝ+
64 rphalflt 13008 . . . . 5 (π ∈ ℝ+ → (π / 2) < π)
6563, 64ax-mp 5 . . . 4 (π / 2) < π
6665a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (π / 2) < π)
6717, 22, 23, 61, 66lelttrd 11377 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) < π)
6817, 67ltned 11355 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2105  wne 2939   class class class wbr 5149  cfv 6544  (class class class)co 7412  cc 11111  cr 11112  0cc0 11113  1c1 11114  *cxr 11252   < clt 11253  cle 11254  cmin 11449  -cneg 11450   / cdiv 11876  2c2 12272  +crp 12979  [,]cicc 13332  cre 15049  cim 15050  abscabs 15186  πcpi 16015  logclog 26296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191  ax-addf 11192  ax-mulf 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-supp 8150  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-er 8706  df-map 8825  df-pm 8826  df-ixp 8895  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fsupp 9365  df-fi 9409  df-sup 9440  df-inf 9441  df-oi 9508  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ioc 13334  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-mod 13840  df-seq 13972  df-exp 14033  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15019  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-limsup 15420  df-clim 15437  df-rlim 15438  df-sum 15638  df-ef 16016  df-sin 16018  df-cos 16019  df-pi 16021  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cld 22744  df-ntr 22745  df-cls 22746  df-nei 22823  df-lp 22861  df-perf 22862  df-cn 22952  df-cnp 22953  df-haus 23040  df-tx 23287  df-hmeo 23480  df-fil 23571  df-fm 23663  df-flim 23664  df-flf 23665  df-xms 24047  df-ms 24048  df-tms 24049  df-cncf 24619  df-limc 25616  df-dv 25617  df-log 26298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator