![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isosctrlem1ALT | Structured version Visualization version GIF version |
Description: Lemma for isosctr 26169. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26169. As it is verified by the Metamath program, isosctrlem1ALT 43197 verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 43197. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isosctrlem1ALT | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11108 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) |
3 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
4 | 2, 3 | subcld 11511 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 − 𝐴) ∈ ℂ) |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ) |
6 | subeq0 11426 | . . . . . . . . . . 11 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) | |
7 | 6 | biimpd 228 | . . . . . . . . . 10 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴)) |
8 | 7 | idiALT 42740 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴)) |
9 | 1, 3, 8 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 → 1 = 𝐴)) |
10 | 9 | con3d 152 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → ¬ (1 − 𝐴) = 0)) |
11 | df-ne 2944 | . . . . . . . 8 ⊢ ((1 − 𝐴) ≠ 0 ↔ ¬ (1 − 𝐴) = 0) | |
12 | 11 | biimpri 227 | . . . . . . 7 ⊢ (¬ (1 − 𝐴) = 0 → (1 − 𝐴) ≠ 0) |
13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → (1 − 𝐴) ≠ 0)) |
14 | 13 | imp 407 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0) |
15 | 5, 14 | logcld 25924 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ) |
16 | 15 | imcld 15079 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ) |
17 | 16 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ) |
18 | pire 25813 | . . . . 5 ⊢ π ∈ ℝ | |
19 | 2re 12226 | . . . . 5 ⊢ 2 ∈ ℝ | |
20 | 2ne0 12256 | . . . . 5 ⊢ 2 ≠ 0 | |
21 | 18, 19, 20 | redivcli 11921 | . . . 4 ⊢ (π / 2) ∈ ℝ |
22 | 21 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (π / 2) ∈ ℝ) |
23 | 18 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → π ∈ ℝ) |
24 | neghalfpirx 25821 | . . . 4 ⊢ -(π / 2) ∈ ℝ* | |
25 | 21 | rexri 11212 | . . . 4 ⊢ (π / 2) ∈ ℝ* |
26 | 3 | recld 15078 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
27 | 26 | recnd 11182 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
28 | 27 | subidd 11499 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0) |
29 | 28 | adantr 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0) |
30 | 1re 11154 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
31 | 30 | a1i 11 | . . . . . . . . 9 ⊢ (1 ∈ ℂ → 1 ∈ ℝ) |
32 | 1, 31 | ax-mp 5 | . . . . . . . 8 ⊢ 1 ∈ ℝ |
33 | 3 | releabsd 15335 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
34 | 33 | adantr 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
35 | id 22 | . . . . . . . . . 10 ⊢ ((abs‘𝐴) = 1 → (abs‘𝐴) = 1) | |
36 | 35 | adantl 482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1) |
37 | 34, 36 | breqtrd 5131 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ 1) |
38 | lesub1 11648 | . . . . . . . . . 10 ⊢ (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((ℜ‘𝐴) ≤ 1 ↔ ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))) | |
39 | 38 | 3impcombi 43080 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))) |
40 | 39 | idiALT 42740 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))) |
41 | 32, 26, 37, 40 | mp3an2ani 1468 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))) |
42 | 29, 41 | eqbrtrrd 5129 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (1 − (ℜ‘𝐴))) |
43 | 32 | a1i 11 | . . . . . . . . . . 11 ⊢ (⊤ → 1 ∈ ℝ) |
44 | 43 | rered 15108 | . . . . . . . . . 10 ⊢ (⊤ → (ℜ‘1) = 1) |
45 | 44 | mptru 1548 | . . . . . . . . 9 ⊢ (ℜ‘1) = 1 |
46 | oveq1 7363 | . . . . . . . . . 10 ⊢ ((ℜ‘1) = 1 → ((ℜ‘1) − (ℜ‘𝐴)) = (1 − (ℜ‘𝐴))) | |
47 | 46 | eqcomd 2742 | . . . . . . . . 9 ⊢ ((ℜ‘1) = 1 → (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))) |
48 | 45, 47 | ax-mp 5 | . . . . . . . 8 ⊢ (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)) |
49 | resub 15011 | . . . . . . . . . . 11 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))) | |
50 | 49 | eqcomd 2742 | . . . . . . . . . 10 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴))) |
51 | 50 | idiALT 42740 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴))) |
52 | 1, 3, 51 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴))) |
53 | 48, 52 | eqtrid 2788 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴))) |
54 | 53 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴))) |
55 | 42, 54 | breqtrd 5131 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (ℜ‘(1 − 𝐴))) |
56 | argrege0 25964 | . . . . . . 7 ⊢ (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) | |
57 | 56 | 3coml 1127 | . . . . . 6 ⊢ (((1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ∈ ℂ) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) |
58 | 57 | 3com13 1124 | . . . . 5 ⊢ (((1 − 𝐴) ∈ ℂ ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) |
59 | 4, 55, 14, 58 | eel12131 42976 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) |
60 | iccleub 13318 | . . . 4 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) | |
61 | 24, 25, 59, 60 | mp3an12i 1465 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) |
62 | pipos 25815 | . . . . . 6 ⊢ 0 < π | |
63 | 18, 62 | elrpii 12917 | . . . . 5 ⊢ π ∈ ℝ+ |
64 | rphalflt 12943 | . . . . 5 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
65 | 63, 64 | ax-mp 5 | . . . 4 ⊢ (π / 2) < π |
66 | 65 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (π / 2) < π) |
67 | 17, 22, 23, 61, 66 | lelttrd 11312 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) < π) |
68 | 17, 67 | ltned 11290 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5105 ‘cfv 6496 (class class class)co 7356 ℂcc 11048 ℝcr 11049 0cc0 11050 1c1 11051 ℝ*cxr 11187 < clt 11188 ≤ cle 11189 − cmin 11384 -cneg 11385 / cdiv 11811 2c2 12207 ℝ+crp 12914 [,]cicc 13266 ℜcre 14981 ℑcim 14982 abscabs 15118 πcpi 15948 logclog 25908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7671 ax-inf2 9576 ax-cnex 11106 ax-resscn 11107 ax-1cn 11108 ax-icn 11109 ax-addcl 11110 ax-addrcl 11111 ax-mulcl 11112 ax-mulrcl 11113 ax-mulcom 11114 ax-addass 11115 ax-mulass 11116 ax-distr 11117 ax-i2m1 11118 ax-1ne0 11119 ax-1rid 11120 ax-rnegex 11121 ax-rrecex 11122 ax-cnre 11123 ax-pre-lttri 11124 ax-pre-lttrn 11125 ax-pre-ltadd 11126 ax-pre-mulgt0 11127 ax-pre-sup 11128 ax-addf 11129 ax-mulf 11130 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7312 df-ov 7359 df-oprab 7360 df-mpo 7361 df-of 7616 df-om 7802 df-1st 7920 df-2nd 7921 df-supp 8092 df-frecs 8211 df-wrecs 8242 df-recs 8316 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8647 df-map 8766 df-pm 8767 df-ixp 8835 df-en 8883 df-dom 8884 df-sdom 8885 df-fin 8886 df-fsupp 9305 df-fi 9346 df-sup 9377 df-inf 9378 df-oi 9445 df-card 9874 df-pnf 11190 df-mnf 11191 df-xr 11192 df-ltxr 11193 df-le 11194 df-sub 11386 df-neg 11387 df-div 11812 df-nn 12153 df-2 12215 df-3 12216 df-4 12217 df-5 12218 df-6 12219 df-7 12220 df-8 12221 df-9 12222 df-n0 12413 df-z 12499 df-dec 12618 df-uz 12763 df-q 12873 df-rp 12915 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13267 df-ioc 13268 df-ico 13269 df-icc 13270 df-fz 13424 df-fzo 13567 df-fl 13696 df-mod 13774 df-seq 13906 df-exp 13967 df-fac 14173 df-bc 14202 df-hash 14230 df-shft 14951 df-cj 14983 df-re 14984 df-im 14985 df-sqrt 15119 df-abs 15120 df-limsup 15352 df-clim 15369 df-rlim 15370 df-sum 15570 df-ef 15949 df-sin 15951 df-cos 15952 df-pi 15954 df-struct 17018 df-sets 17035 df-slot 17053 df-ndx 17065 df-base 17083 df-ress 17112 df-plusg 17145 df-mulr 17146 df-starv 17147 df-sca 17148 df-vsca 17149 df-ip 17150 df-tset 17151 df-ple 17152 df-ds 17154 df-unif 17155 df-hom 17156 df-cco 17157 df-rest 17303 df-topn 17304 df-0g 17322 df-gsum 17323 df-topgen 17324 df-pt 17325 df-prds 17328 df-xrs 17383 df-qtop 17388 df-imas 17389 df-xps 17391 df-mre 17465 df-mrc 17466 df-acs 17468 df-mgm 18496 df-sgrp 18545 df-mnd 18556 df-submnd 18601 df-mulg 18871 df-cntz 19095 df-cmn 19562 df-psmet 20786 df-xmet 20787 df-met 20788 df-bl 20789 df-mopn 20790 df-fbas 20791 df-fg 20792 df-cnfld 20795 df-top 22241 df-topon 22258 df-topsp 22280 df-bases 22294 df-cld 22368 df-ntr 22369 df-cls 22370 df-nei 22447 df-lp 22485 df-perf 22486 df-cn 22576 df-cnp 22577 df-haus 22664 df-tx 22911 df-hmeo 23104 df-fil 23195 df-fm 23287 df-flim 23288 df-flf 23289 df-xms 23671 df-ms 23672 df-tms 23673 df-cncf 24239 df-limc 25228 df-dv 25229 df-log 25910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |