Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsspwALT Structured version   Visualization version   GIF version

Theorem trsspwALT 44789
Description: Virtual deduction proof of the left-to-right implication of dftr4 5290. A transitive class is a subset of its power class. This proof corresponds to the virtual deduction proof of dftr4 5290 without accumulating results. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsspwALT (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem trsspwALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ss 3993 . . 3 (𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴))
2 idn1 44545 . . . . . . 7 (   Tr 𝐴   ▶   Tr 𝐴   )
3 idn2 44584 . . . . . . 7 (   Tr 𝐴   ,   𝑥𝐴   ▶   𝑥𝐴   )
4 trss 5294 . . . . . . 7 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
52, 3, 4e12 44695 . . . . . 6 (   Tr 𝐴   ,   𝑥𝐴   ▶   𝑥𝐴   )
6 vex 3492 . . . . . . 7 𝑥 ∈ V
76elpw 4626 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
85, 7e2bir 44604 . . . . 5 (   Tr 𝐴   ,   𝑥𝐴   ▶   𝑥 ∈ 𝒫 𝐴   )
98in2 44576 . . . 4 (   Tr 𝐴   ▶   (𝑥𝐴𝑥 ∈ 𝒫 𝐴)   )
109gen11 44587 . . 3 (   Tr 𝐴   ▶   𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴)   )
11 biimpr 220 . . 3 ((𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴)) → (∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴) → 𝐴 ⊆ 𝒫 𝐴))
121, 10, 11e01 44662 . 2 (   Tr 𝐴   ▶   𝐴 ⊆ 𝒫 𝐴   )
1312in1 44542 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2108  wss 3976  𝒫 cpw 4622  Tr wtr 5283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-ss 3993  df-pw 4624  df-uni 4932  df-tr 5284  df-vd1 44541  df-vd2 44549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator