Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsspwALT Structured version   Visualization version   GIF version

Theorem trsspwALT 44850
Description: Virtual deduction proof of the left-to-right implication of dftr4 5199. A transitive class is a subset of its power class. This proof corresponds to the virtual deduction proof of dftr4 5199 without accumulating results. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsspwALT (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem trsspwALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ss 3914 . . 3 (𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴))
2 idn1 44607 . . . . . . 7 (   Tr 𝐴   ▶   Tr 𝐴   )
3 idn2 44646 . . . . . . 7 (   Tr 𝐴   ,   𝑥𝐴   ▶   𝑥𝐴   )
4 trss 5203 . . . . . . 7 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
52, 3, 4e12 44756 . . . . . 6 (   Tr 𝐴   ,   𝑥𝐴   ▶   𝑥𝐴   )
6 vex 3440 . . . . . . 7 𝑥 ∈ V
76elpw 4549 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
85, 7e2bir 44666 . . . . 5 (   Tr 𝐴   ,   𝑥𝐴   ▶   𝑥 ∈ 𝒫 𝐴   )
98in2 44638 . . . 4 (   Tr 𝐴   ▶   (𝑥𝐴𝑥 ∈ 𝒫 𝐴)   )
109gen11 44649 . . 3 (   Tr 𝐴   ▶   𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴)   )
11 biimpr 220 . . 3 ((𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴)) → (∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴) → 𝐴 ⊆ 𝒫 𝐴))
121, 10, 11e01 44724 . 2 (   Tr 𝐴   ▶   𝐴 ⊆ 𝒫 𝐴   )
1312in1 44604 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wcel 2111  wss 3897  𝒫 cpw 4545  Tr wtr 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-ss 3914  df-pw 4547  df-uni 4855  df-tr 5194  df-vd1 44603  df-vd2 44611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator