![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trsspwALT | Structured version Visualization version GIF version |
Description: Virtual deduction proof of the left-to-right implication of dftr4 5272. A transitive class is a subset of its power class. This proof corresponds to the virtual deduction proof of dftr4 5272 without accumulating results. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
trsspwALT | ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3968 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | |
2 | idn1 43638 | . . . . . . 7 ⊢ ( Tr 𝐴 ▶ Tr 𝐴 ) | |
3 | idn2 43677 | . . . . . . 7 ⊢ ( Tr 𝐴 , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) | |
4 | trss 5276 | . . . . . . 7 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
5 | 2, 3, 4 | e12 43788 | . . . . . 6 ⊢ ( Tr 𝐴 , 𝑥 ∈ 𝐴 ▶ 𝑥 ⊆ 𝐴 ) |
6 | vex 3477 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
7 | 6 | elpw 4606 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
8 | 5, 7 | e2bir 43697 | . . . . 5 ⊢ ( Tr 𝐴 , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝒫 𝐴 ) |
9 | 8 | in2 43669 | . . . 4 ⊢ ( Tr 𝐴 ▶ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴) ) |
10 | 9 | gen11 43680 | . . 3 ⊢ ( Tr 𝐴 ▶ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴) ) |
11 | biimpr 219 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) → (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴) → 𝐴 ⊆ 𝒫 𝐴)) | |
12 | 1, 10, 11 | e01 43755 | . 2 ⊢ ( Tr 𝐴 ▶ 𝐴 ⊆ 𝒫 𝐴 ) |
13 | 12 | in1 43635 | 1 ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 ∈ wcel 2105 ⊆ wss 3948 𝒫 cpw 4602 Tr wtr 5265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-v 3475 df-in 3955 df-ss 3965 df-pw 4604 df-uni 4909 df-tr 5266 df-vd1 43634 df-vd2 43642 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |