Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3impexpbicomiVD Structured version   Visualization version   GIF version

Theorem 3impexpbicomiVD 44441
Description: Virtual deduction proof of 3impexpbicomi 44063. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: ((𝜑𝜓𝜒) → (𝜃 𝜏))
qed:1,?: e0a 44355 (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
3impexpbicomiVD.1 ((𝜑𝜓𝜒) → (𝜃𝜏))
Assertion
Ref Expression
3impexpbicomiVD (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))

Proof of Theorem 3impexpbicomiVD
StepHypRef Expression
1 3impexpbicomiVD.1 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
2 3impexpbicom 44062 . . 3 (((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))
32biimpi 215 . 2 (((𝜑𝜓𝜒) → (𝜃𝜏)) → (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))
41, 3e0a 44355 1 (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator