Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3impexpbicomi Structured version   Visualization version   GIF version

Theorem 3impexpbicomi 39622
Description: Inference associated with 3impexpbicom 39621. Derived automatically from 3impexpbicomiVD 40009. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
3impexpbicomi.1 ((𝜑𝜓𝜒) → (𝜃𝜏))
Assertion
Ref Expression
3impexpbicomi (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))

Proof of Theorem 3impexpbicomi
StepHypRef Expression
1 3impexpbicomi.1 . . 3 ((𝜑𝜓𝜒) → (𝜃𝜏))
21bicomd 215 . 2 ((𝜑𝜓𝜒) → (𝜏𝜃))
323exp 1109 1 (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-3an 1073
This theorem is referenced by:  sbcoreleleq  39677  sbcoreleleqVD  40010
  Copyright terms: Public domain W3C validator