|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3impexpbicomi | Structured version Visualization version GIF version | ||
| Description: Inference associated with 3impexpbicom 44505. Derived automatically from 3impexpbicomiVD 44883. (Contributed by Alan Sare, 31-Dec-2011.) | 
| Ref | Expression | 
|---|---|
| 3impexpbicomi.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) | 
| Ref | Expression | 
|---|---|
| 3impexpbicomi | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3impexpbicomi.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) | 
| 3 | 2 | 3exp 1119 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: sbcoreleleq 44560 sbcoreleleqVD 44884 | 
| Copyright terms: Public domain | W3C validator |