Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3impexpbicomi Structured version   Visualization version   GIF version

Theorem 3impexpbicomi 42100
Description: Inference associated with 3impexpbicom 42099. Derived automatically from 3impexpbicomiVD 42478. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
3impexpbicomi.1 ((𝜑𝜓𝜒) → (𝜃𝜏))
Assertion
Ref Expression
3impexpbicomi (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))

Proof of Theorem 3impexpbicomi
StepHypRef Expression
1 3impexpbicomi.1 . . 3 ((𝜑𝜓𝜒) → (𝜃𝜏))
21bicomd 222 . 2 ((𝜑𝜓𝜒) → (𝜏𝜃))
323exp 1118 1 (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  sbcoreleleq  42155  sbcoreleleqVD  42479
  Copyright terms: Public domain W3C validator