| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3impexpbicomi | Structured version Visualization version GIF version | ||
| Description: Inference associated with 3impexpbicom 44480. Derived automatically from 3impexpbicomiVD 44857. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| 3impexpbicomi.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3impexpbicomi | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impexpbicomi.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) |
| 3 | 2 | 3exp 1119 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: sbcoreleleq 44535 sbcoreleleqVD 44858 |
| Copyright terms: Public domain | W3C validator |