Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3impexpbicomi | Structured version Visualization version GIF version |
Description: Inference associated with 3impexpbicom 41988. Derived automatically from 3impexpbicomiVD 42367. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
3impexpbicomi.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3impexpbicomi | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impexpbicomi.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) | |
2 | 1 | bicomd 222 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) |
3 | 2 | 3exp 1117 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: sbcoreleleq 42044 sbcoreleleqVD 42368 |
Copyright terms: Public domain | W3C validator |