![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3impexpbicom | Structured version Visualization version GIF version |
Description: Version of 3impexp 1359 where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
3impexpbicom | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 221 | . . . 4 ⊢ ((𝜃 ↔ 𝜏) ↔ (𝜏 ↔ 𝜃)) | |
2 | imbi2 349 | . . . . 5 ⊢ (((𝜃 ↔ 𝜏) ↔ (𝜏 ↔ 𝜃)) → (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)))) | |
3 | 2 | biimpcd 249 | . . . 4 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) → (((𝜃 ↔ 𝜏) ↔ (𝜏 ↔ 𝜃)) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)))) |
4 | 1, 3 | mpi 20 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃))) |
5 | 4 | 3expd 1354 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) → (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) |
6 | 3impexp 1359 | . . . 4 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) | |
7 | 6 | biimpri 227 | . . 3 ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃))) |
8 | 7, 1 | syl6ibr 252 | . 2 ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))) |
9 | 5, 8 | impbii 208 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3impexpbicomiVD 43232 |
Copyright terms: Public domain | W3C validator |