Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcoreleleqVD Structured version   Visualization version   GIF version

Theorem sbcoreleleqVD 41200
Description: Virtual deduction proof of sbcoreleleq 40876. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1,?: e1a 40968 (   𝐴𝐵   ▶   ([𝐴 / 𝑦]𝑥 𝑦𝑥𝐴)   )
3:1,?: e1a 40968 (   𝐴𝐵   ▶   ([𝐴 / 𝑦]𝑦 𝑥𝐴𝑥)   )
4:1,?: e1a 40968 (   𝐴𝐵   ▶   ([𝐴 / 𝑦]𝑥 = 𝑦𝑥 = 𝐴)   )
5:2,3,4,?: e111 41015 (   𝐴𝐵   ▶   ((𝑥𝐴 𝐴𝑥𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥 [𝐴 / 𝑦]𝑥 = 𝑦))   )
6:1,?: e1a 40968 (   𝐴𝐵    ▶   ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦))   )
7:5,6: e11 41029 (   𝐴𝐵   ▶   ([𝐴 / 𝑦](𝑥 𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴))   )
qed:7: (𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦 𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcoreleleqVD (𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem sbcoreleleqVD
StepHypRef Expression
1 sbcor 3824 . . . . . . 7 ([𝐴 / 𝑦]((𝑥𝑦𝑦𝑥) ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦))
21a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑦]((𝑥𝑦𝑦𝑥) ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦)))
3 df-3or 1084 . . . . . . . . 9 ((𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ((𝑥𝑦𝑦𝑥) ∨ 𝑥 = 𝑦))
43bicomi 226 . . . . . . . 8 (((𝑥𝑦𝑦𝑥) ∨ 𝑥 = 𝑦) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
54sbcbii 3831 . . . . . . 7 ([𝐴 / 𝑦]((𝑥𝑦𝑦𝑥) ∨ 𝑥 = 𝑦) ↔ [𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))
65a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑦]((𝑥𝑦𝑦𝑥) ∨ 𝑥 = 𝑦) ↔ [𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
7 sbcor 3824 . . . . . . . 8 ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥))
87a1i 11 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥)))
98orbi1d 913 . . . . . 6 (𝐴𝐵 → (([𝐴 / 𝑦](𝑥𝑦𝑦𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦) ↔ (([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦)))
102, 6, 93bitr3d 311 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦)))
11 df-3or 1084 . . . . 5 (([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦) ↔ (([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦))
1210, 11syl6bbr 291 . . . 4 (𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦)))
1312dfvd1ir 40914 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦))   )
14 sbcel2gv 3843 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑦]𝑥𝑦𝑥𝐴))
1514dfvd1ir 40914 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑦]𝑥𝑦𝑥𝐴)   )
16 sbcel1v 3841 . . . 4 ([𝐴 / 𝑦]𝑦𝑥𝐴𝑥)
17 eqsbc3r 3839 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑦]𝑥 = 𝑦𝑥 = 𝐴))
1817dfvd1ir 40914 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑦]𝑥 = 𝑦𝑥 = 𝐴)   )
19 3orbi123 40852 . . . . 5 ((([𝐴 / 𝑦]𝑥𝑦𝑥𝐴) ∧ ([𝐴 / 𝑦]𝑦𝑥𝐴𝑥) ∧ ([𝐴 / 𝑦]𝑥 = 𝑦𝑥 = 𝐴)) → (([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
20193impexpbicomi 40821 . . . 4 (([𝐴 / 𝑦]𝑥𝑦𝑥𝐴) → (([𝐴 / 𝑦]𝑦𝑥𝐴𝑥) → (([𝐴 / 𝑦]𝑥 = 𝑦𝑥 = 𝐴) → ((𝑥𝐴𝐴𝑥𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦)))))
2115, 16, 18, 20e101 41019 . . 3 (   𝐴𝐵   ▶   ((𝑥𝐴𝐴𝑥𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦))   )
22 biantr 804 . . 3 ((([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦)) ∧ ((𝑥𝐴𝐴𝑥𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦))) → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
2313, 21, 22e11an 41030 . 2 (   𝐴𝐵   ▶   ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴))   )
2423in1 40912 1 (𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wo 843  w3o 1082   = wceq 1537  wcel 2114  [wsbc 3774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-v 3498  df-sbc 3775  df-vd1 40911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator