Proof of Theorem sbcoreleleqVD
Step | Hyp | Ref
| Expression |
1 | | sbcor 3764 |
. . . . . . 7
⊢
([𝐴 / 𝑦]((𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) |
2 | 1 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦]((𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦))) |
3 | | df-3or 1086 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ((𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ∨ 𝑥 = 𝑦)) |
4 | 3 | bicomi 223 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
5 | 4 | sbcbii 3772 |
. . . . . . 7
⊢
([𝐴 / 𝑦]((𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ∨ 𝑥 = 𝑦) ↔ [𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦]((𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ∨ 𝑥 = 𝑦) ↔ [𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))) |
7 | | sbcor 3764 |
. . . . . . . 8
⊢
([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥)) |
8 | 7 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥))) |
9 | 8 | orbi1d 913 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → (([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦) ↔ (([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦))) |
10 | 2, 6, 9 | 3bitr3d 308 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦))) |
11 | | df-3or 1086 |
. . . . 5
⊢
(([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦) ↔ (([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥) ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) |
12 | 10, 11 | bitr4di 288 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))) |
13 | 12 | dfvd1ir 42082 |
. . 3
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) ) |
14 | | sbcel2gv 3784 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) |
15 | 14 | dfvd1ir 42082 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) ) |
16 | | sbcel1v 3783 |
. . . 4
⊢
([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥) |
17 | | eqsbc2 3781 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) |
18 | 17 | dfvd1ir 42082 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴) ) |
19 | | 3orbi123 42020 |
. . . . 5
⊢
((([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) ∧ ([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥) ∧ ([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) → (([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) |
20 | 19 | 3impexpbicomi 41989 |
. . . 4
⊢
(([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) → (([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥) → (([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))))) |
21 | 15, 16, 18, 20 | e101 42187 |
. . 3
⊢ ( 𝐴 ∈ 𝐵 ▶ ((𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) ) |
22 | | biantr 802 |
. . 3
⊢
((([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) ∧ ((𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))) → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) |
23 | 13, 21, 22 | e11an 42198 |
. 2
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴)) ) |
24 | 23 | in1 42080 |
1
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) |