Proof of Theorem 3impexpbicomVD
Step | Hyp | Ref
| Expression |
1 | | idn1 42083 |
. . . . 5
⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ) |
2 | | bicom 221 |
. . . . 5
⊢ ((𝜃 ↔ 𝜏) ↔ (𝜏 ↔ 𝜃)) |
3 | | imbi2 348 |
. . . . . 6
⊢ (((𝜃 ↔ 𝜏) ↔ (𝜏 ↔ 𝜃)) → (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)))) |
4 | 3 | biimpcd 248 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) → (((𝜃 ↔ 𝜏) ↔ (𝜏 ↔ 𝜃)) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)))) |
5 | 1, 2, 4 | e10 42203 |
. . . 4
⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) ) |
6 | | 3impexp 1356 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) |
7 | 6 | biimpi 215 |
. . . 4
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) |
8 | 5, 7 | e1a 42136 |
. . 3
⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ▶ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) ) |
9 | 8 | in1 42080 |
. 2
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) → (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) |
10 | | idn1 42083 |
. . . . 5
⊢ ( (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) ▶ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) ) |
11 | 6 | biimpri 227 |
. . . . 5
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃))) |
12 | 10, 11 | e1a 42136 |
. . . 4
⊢ ( (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) ) |
13 | 3 | biimprcd 249 |
. . . 4
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) → (((𝜃 ↔ 𝜏) ↔ (𝜏 ↔ 𝜃)) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)))) |
14 | 12, 2, 13 | e10 42203 |
. . 3
⊢ ( (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ) |
15 | 14 | in1 42080 |
. 2
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))) |
16 | | impbi 207 |
. 2
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) → (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) → (((𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))) → (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))))) |
17 | 9, 15, 16 | e00 42277 |
1
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) |