Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3jaodd | Structured version Visualization version GIF version |
Description: Double deduction form of 3jaoi 1426. (Contributed by Scott Fenton, 20-Apr-2011.) |
Ref | Expression |
---|---|
3jaodd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) |
3jaodd.2 | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) |
3jaodd.3 | ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) |
Ref | Expression |
---|---|
3jaodd | ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜃 ∨ 𝜏) → 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaodd.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | |
2 | 1 | com3r 87 | . . 3 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜂))) |
3 | 3jaodd.2 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) | |
4 | 3 | com3r 87 | . . 3 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜂))) |
5 | 3jaodd.3 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) | |
6 | 5 | com3r 87 | . . 3 ⊢ (𝜏 → (𝜑 → (𝜓 → 𝜂))) |
7 | 2, 4, 6 | 3jaoi 1426 | . 2 ⊢ ((𝜒 ∨ 𝜃 ∨ 𝜏) → (𝜑 → (𝜓 → 𝜂))) |
8 | 7 | com3l 89 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜃 ∨ 𝜏) → 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |