Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3orit Structured version   Visualization version   GIF version

Theorem 3orit 33658
Description: Closed form of 3ori 1423. (Contributed by Scott Fenton, 20-Apr-2011.)
Assertion
Ref Expression
3orit ((𝜑𝜓𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒))

Proof of Theorem 3orit
StepHypRef Expression
1 df-3or 1087 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
2 df-or 845 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (¬ (𝜑𝜓) → 𝜒))
3 ioran 981 . . 3 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
43imbi1i 350 . 2 ((¬ (𝜑𝜓) → 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒))
51, 2, 43bitri 297 1 ((𝜑𝜓𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator