| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3orit | Structured version Visualization version GIF version | ||
| Description: Closed form of 3ori 1426. (Contributed by Scott Fenton, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| 3orit | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1088 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | df-or 849 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (¬ (𝜑 ∨ 𝜓) → 𝜒)) | |
| 3 | ioran 986 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 4 | 3 | imbi1i 349 | . 2 ⊢ ((¬ (𝜑 ∨ 𝜓) → 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒)) |
| 5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∨ w3o 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |