| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > untangtr | Structured version Visualization version GIF version | ||
| Description: A transitive class is untangled iff its elements are. (Contributed by Scott Fenton, 7-Mar-2011.) |
| Ref | Expression |
|---|---|
| untangtr | ⊢ (Tr 𝐴 → (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tr 5260 | . . . 4 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 2 | ssralv 4052 | . . . 4 ⊢ (∪ 𝐴 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥)) | |
| 3 | 1, 2 | sylbi 217 | . . 3 ⊢ (Tr 𝐴 → (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥)) |
| 4 | elequ1 2115 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
| 5 | elequ2 2123 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) | |
| 6 | 4, 5 | bitrd 279 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
| 7 | 6 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
| 8 | 7 | cbvralvw 3237 | . . . 4 ⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ ∪ 𝐴 ¬ 𝑦 ∈ 𝑦) |
| 9 | untuni 35709 | . . . 4 ⊢ (∀𝑦 ∈ ∪ 𝐴 ¬ 𝑦 ∈ 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦) | |
| 10 | 8, 9 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦) |
| 11 | 3, 10 | imbitrdi 251 | . 2 ⊢ (Tr 𝐴 → (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦)) |
| 12 | untelirr 35708 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥) | |
| 13 | 12 | ralimi 3083 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) |
| 14 | 11, 13 | impbid1 225 | 1 ⊢ (Tr 𝐴 → (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3061 ⊆ wss 3951 ∪ cuni 4907 Tr wtr 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-v 3482 df-ss 3968 df-uni 4908 df-tr 5260 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |