Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  untangtr Structured version   Visualization version   GIF version

Theorem untangtr 34984
Description: A transitive class is untangled iff its elements are. (Contributed by Scott Fenton, 7-Mar-2011.)
Assertion
Ref Expression
untangtr (Tr 𝐴 → (∀𝑥𝐴 ¬ 𝑥𝑥 ↔ ∀𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem untangtr
StepHypRef Expression
1 df-tr 5267 . . . 4 (Tr 𝐴 𝐴𝐴)
2 ssralv 4051 . . . 4 ( 𝐴𝐴 → (∀𝑥𝐴 ¬ 𝑥𝑥 → ∀𝑥 𝐴 ¬ 𝑥𝑥))
31, 2sylbi 216 . . 3 (Tr 𝐴 → (∀𝑥𝐴 ¬ 𝑥𝑥 → ∀𝑥 𝐴 ¬ 𝑥𝑥))
4 elequ1 2112 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑥))
5 elequ2 2120 . . . . . . 7 (𝑥 = 𝑦 → (𝑦𝑥𝑦𝑦))
64, 5bitrd 278 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
76notbid 317 . . . . 5 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
87cbvralvw 3233 . . . 4 (∀𝑥 𝐴 ¬ 𝑥𝑥 ↔ ∀𝑦 𝐴 ¬ 𝑦𝑦)
9 untuni 34979 . . . 4 (∀𝑦 𝐴 ¬ 𝑦𝑦 ↔ ∀𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦)
108, 9bitri 274 . . 3 (∀𝑥 𝐴 ¬ 𝑥𝑥 ↔ ∀𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦)
113, 10imbitrdi 250 . 2 (Tr 𝐴 → (∀𝑥𝐴 ¬ 𝑥𝑥 → ∀𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦))
12 untelirr 34978 . . 3 (∀𝑦𝑥 ¬ 𝑦𝑦 → ¬ 𝑥𝑥)
1312ralimi 3082 . 2 (∀𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑥𝐴 ¬ 𝑥𝑥)
1411, 13impbid1 224 1 (Tr 𝐴 → (∀𝑥𝐴 ¬ 𝑥𝑥 ↔ ∀𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wral 3060  wss 3949   cuni 4909  Tr wtr 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-v 3475  df-in 3956  df-ss 3966  df-uni 4910  df-tr 5267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator