Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3jaoi | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
Ref | Expression |
---|---|
3jaoi.1 | ⊢ (𝜑 → 𝜓) |
3jaoi.2 | ⊢ (𝜒 → 𝜓) |
3jaoi.3 | ⊢ (𝜃 → 𝜓) |
Ref | Expression |
---|---|
3jaoi | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaoi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 3jaoi.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 3jaoi.3 | . . 3 ⊢ (𝜃 → 𝜓) | |
4 | 1, 2, 3 | 3pm3.2i 1338 | . 2 ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) |
5 | 3jao 1424 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 |
This theorem is referenced by: 3jaoian 1428 tpres 7085 ordzsl 7701 onzsl 7702 tfrlem16 8233 oawordeulem 8394 fsetexb 8661 elfiun 9198 infsupprpr 9272 domtriomlem 10207 axdc3lem2 10216 rankcf 10542 znegcl 12364 xrltnr 12864 xnegcl 12956 xnegneg 12957 xltnegi 12959 xnegid 12981 xaddid1 12984 xmulid1 13022 xrsupsslem 13050 xrinfmsslem 13051 reltxrnmnf 13085 elfznelfzo 13501 addmodlteq 13675 hashle2pr 14200 hashge2el2difr 14204 hashtpg 14208 hash1to3 14214 swrdnd0 14379 prm23lt5 16524 prm23ge5 16525 cshwshashlem1 16806 01eq0ring 20552 ioombl1 24735 2irrexpq 25894 ppiublem1 26359 zabsle1 26453 gausslemma2dlem0f 26518 gausslemma2dlem0i 26521 gausslemma2dlem4 26526 2lgsoddprm 26573 ostth 26796 nb3grprlem1 27756 pthdivtx 28106 frgr3vlem1 28646 frgr3vlem2 28647 frgrwopreg 28696 frgrregorufr 28698 frgrregord13 28769 kur14lem7 33183 3jaodd 33666 dfrdg2 33780 sltval2 33868 sltintdifex 33873 sltres 33874 sltsolem1 33887 nosepnelem 33891 dfrdg4 34262 iooelexlt 35542 relowlssretop 35543 wl-exeq 35702 iccpartiltu 44885 iccpartigtl 44886 icceuelpart 44899 prproropf1olem4 44969 fmtno4prmfac193 45036 fmtnofz04prm 45040 mogoldbblem 45183 exple2lt6 45711 |
Copyright terms: Public domain | W3C validator |