![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3jaoi | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
Ref | Expression |
---|---|
3jaoi.1 | ⊢ (𝜑 → 𝜓) |
3jaoi.2 | ⊢ (𝜒 → 𝜓) |
3jaoi.3 | ⊢ (𝜃 → 𝜓) |
Ref | Expression |
---|---|
3jaoi | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaoi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 3jaoi.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 3jaoi.3 | . . 3 ⊢ (𝜃 → 𝜓) | |
4 | 1, 2, 3 | 3pm3.2i 1340 | . 2 ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) |
5 | 3jao 1426 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1087 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 |
This theorem is referenced by: 3jaoian 1430 tpres 7202 ordzsl 7834 onzsl 7835 tfrlem16 8393 oawordeulem 8554 fsetexb 8858 elfiun 9425 infsupprpr 9499 domtriomlem 10437 axdc3lem2 10446 rankcf 10772 znegcl 12597 xrltnr 13099 xnegcl 13192 xnegneg 13193 xltnegi 13195 xnegid 13217 xaddrid 13220 xmulrid 13258 xrsupsslem 13286 xrinfmsslem 13287 reltxrnmnf 13321 elfznelfzo 13737 addmodlteq 13911 hashle2pr 14438 hashge2el2difr 14442 hashtpg 14446 hash1to3 14452 swrdnd0 14607 prm23lt5 16747 prm23ge5 16748 cshwshashlem1 17029 01eq0ringOLD 20306 ioombl1 25079 2irrexpq 26239 ppiublem1 26705 zabsle1 26799 gausslemma2dlem0f 26864 gausslemma2dlem0i 26867 gausslemma2dlem4 26872 2lgsoddprm 26919 ostth 27142 sltval2 27159 sltintdifex 27164 sltres 27165 sltsolem1 27178 nosepnelem 27182 nb3grprlem1 28637 pthdivtx 28986 frgr3vlem1 29526 frgr3vlem2 29527 frgrwopreg 29576 frgrregorufr 29578 frgrregord13 29649 kur14lem7 34203 3jaodd 34684 dfrdg2 34767 dfrdg4 34923 iooelexlt 36243 relowlssretop 36244 wl-exeq 36403 iccpartiltu 46090 iccpartigtl 46091 icceuelpart 46104 prproropf1olem4 46174 fmtno4prmfac193 46241 fmtnofz04prm 46245 mogoldbblem 46388 exple2lt6 47040 |
Copyright terms: Public domain | W3C validator |