![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3jaoi | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
Ref | Expression |
---|---|
3jaoi.1 | ⊢ (𝜑 → 𝜓) |
3jaoi.2 | ⊢ (𝜒 → 𝜓) |
3jaoi.3 | ⊢ (𝜃 → 𝜓) |
Ref | Expression |
---|---|
3jaoi | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaoi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 3jaoi.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 3jaoi.3 | . . 3 ⊢ (𝜃 → 𝜓) | |
4 | 1, 2, 3 | 3pm3.2i 1339 | . 2 ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) |
5 | 3jao 1425 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 |
This theorem is referenced by: 3jaoian 1429 tpres 7201 ordzsl 7833 onzsl 7834 tfrlem16 8392 oawordeulem 8553 fsetexb 8857 elfiun 9424 infsupprpr 9498 domtriomlem 10436 axdc3lem2 10445 rankcf 10771 znegcl 12596 xrltnr 13098 xnegcl 13191 xnegneg 13192 xltnegi 13194 xnegid 13216 xaddrid 13219 xmulrid 13257 xrsupsslem 13285 xrinfmsslem 13286 reltxrnmnf 13320 elfznelfzo 13736 addmodlteq 13910 hashle2pr 14437 hashge2el2difr 14441 hashtpg 14445 hash1to3 14451 swrdnd0 14606 prm23lt5 16746 prm23ge5 16747 cshwshashlem1 17028 01eq0ringOLD 20305 ioombl1 25078 2irrexpq 26237 ppiublem1 26702 zabsle1 26796 gausslemma2dlem0f 26861 gausslemma2dlem0i 26864 gausslemma2dlem4 26869 2lgsoddprm 26916 ostth 27139 sltval2 27156 sltintdifex 27161 sltres 27162 sltsolem1 27175 nosepnelem 27179 nb3grprlem1 28634 pthdivtx 28983 frgr3vlem1 29523 frgr3vlem2 29524 frgrwopreg 29573 frgrregorufr 29575 frgrregord13 29646 kur14lem7 34198 3jaodd 34679 dfrdg2 34762 dfrdg4 34918 iooelexlt 36238 relowlssretop 36239 wl-exeq 36398 iccpartiltu 46080 iccpartigtl 46081 icceuelpart 46094 prproropf1olem4 46164 fmtno4prmfac193 46231 fmtnofz04prm 46235 mogoldbblem 46378 exple2lt6 47030 |
Copyright terms: Public domain | W3C validator |