Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3jaoi | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
Ref | Expression |
---|---|
3jaoi.1 | ⊢ (𝜑 → 𝜓) |
3jaoi.2 | ⊢ (𝜒 → 𝜓) |
3jaoi.3 | ⊢ (𝜃 → 𝜓) |
Ref | Expression |
---|---|
3jaoi | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaoi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 3jaoi.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 3jaoi.3 | . . 3 ⊢ (𝜃 → 𝜓) | |
4 | 1, 2, 3 | 3pm3.2i 1337 | . 2 ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) |
5 | 3jao 1423 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 |
This theorem is referenced by: 3jaoian 1427 tpres 7058 ordzsl 7667 onzsl 7668 tfrlem16 8195 oawordeulem 8347 fsetexb 8610 elfiun 9119 infsupprpr 9193 domtriomlem 10129 axdc3lem2 10138 rankcf 10464 znegcl 12285 xrltnr 12784 xnegcl 12876 xnegneg 12877 xltnegi 12879 xnegid 12901 xaddid1 12904 xmulid1 12942 xrsupsslem 12970 xrinfmsslem 12971 reltxrnmnf 13005 elfznelfzo 13420 addmodlteq 13594 hashle2pr 14119 hashge2el2difr 14123 hashtpg 14127 hash1to3 14133 swrdnd0 14298 prm23lt5 16443 prm23ge5 16444 cshwshashlem1 16725 01eq0ring 20456 ioombl1 24631 2irrexpq 25790 ppiublem1 26255 zabsle1 26349 gausslemma2dlem0f 26414 gausslemma2dlem0i 26417 gausslemma2dlem4 26422 2lgsoddprm 26469 ostth 26692 nb3grprlem1 27650 pthdivtx 27998 frgr3vlem1 28538 frgr3vlem2 28539 frgrwopreg 28588 frgrregorufr 28590 frgrregord13 28661 kur14lem7 33074 3jaodd 33559 dfrdg2 33677 sltval2 33786 sltintdifex 33791 sltres 33792 sltsolem1 33805 nosepnelem 33809 dfrdg4 34180 iooelexlt 35460 relowlssretop 35461 wl-exeq 35620 iccpartiltu 44762 iccpartigtl 44763 icceuelpart 44776 prproropf1olem4 44846 fmtno4prmfac193 44913 fmtnofz04prm 44917 mogoldbblem 45060 exple2lt6 45588 |
Copyright terms: Public domain | W3C validator |