![]() |
Mathbox for Hongxiu Chen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3jcadALT | Structured version Visualization version GIF version |
Description: Alternate proof of 3jcad 1126. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) Use 3jcad instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
3jcadALT.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jcadALT.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
3jcadALT.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Ref | Expression |
---|---|
3jcadALT | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jcadALT.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3jcadALT.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
3 | 1, 2 | jcad 511 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
4 | 3jcadALT.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
5 | 3, 4 | jcad 511 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) ∧ 𝜏))) |
6 | df-3an 1086 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) ↔ ((𝜒 ∧ 𝜃) ∧ 𝜏)) | |
7 | 5, 6 | imbitrrdi 251 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |