| Mathbox for Hongxiu Chen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3jcadALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of 3jcad 1129. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) Use 3jcad instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 3jcadALT.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3jcadALT.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3jcadALT.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3jcadALT | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jcadALT.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3jcadALT.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 3 | 1, 2 | jcad 512 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| 4 | 3jcadALT.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 5 | 3, 4 | jcad 512 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) ∧ 𝜏))) |
| 6 | df-3an 1088 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) ↔ ((𝜒 ∧ 𝜃) ∧ 𝜏)) | |
| 7 | 5, 6 | imbitrrdi 252 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |