Users' Mathboxes Mathbox for Hongxiu Chen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3jcadALT Structured version   Visualization version   GIF version

Theorem 3jcadALT 35655
Description: Alternate proof of 3jcad 1129. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) Use 3jcad instead. (New usage is discouraged.)
Hypotheses
Ref Expression
3jcadALT.1 (𝜑 → (𝜓𝜒))
3jcadALT.2 (𝜑 → (𝜓𝜃))
3jcadALT.3 (𝜑 → (𝜓𝜏))
Assertion
Ref Expression
3jcadALT (𝜑 → (𝜓 → (𝜒𝜃𝜏)))

Proof of Theorem 3jcadALT
StepHypRef Expression
1 3jcadALT.1 . . . 4 (𝜑 → (𝜓𝜒))
2 3jcadALT.2 . . . 4 (𝜑 → (𝜓𝜃))
31, 2jcad 512 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
4 3jcadALT.3 . . 3 (𝜑 → (𝜓𝜏))
53, 4jcad 512 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) ∧ 𝜏)))
6 df-3an 1089 . 2 ((𝜒𝜃𝜏) ↔ ((𝜒𝜃) ∧ 𝜏))
75, 6imbitrrdi 252 1 (𝜑 → (𝜓 → (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator