Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3jcad | Structured version Visualization version GIF version |
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) |
Ref | Expression |
---|---|
3jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
3jcad.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Ref | Expression |
---|---|
3jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jcad.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | imp 407 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | 3jcad.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
4 | 3 | imp 407 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 3jcad.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
6 | 5 | imp 407 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
7 | 2, 4, 6 | 3jca 1127 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
8 | 7 | ex 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: onfununi 8172 uzm1 12616 ixxssixx 13093 iccid 13124 iccsplit 13217 fzen 13273 lmodprop2d 20185 fbun 22991 hausflim 23132 icoopnst 24102 iocopnst 24103 abelth 25600 usgr2pth 28132 shsvs 29685 cnlnssadj 30442 fnrelpredd 33061 cvmlift2lem10 33274 endofsegid 34387 elicc3 34506 areacirclem1 35865 islvol2aN 37606 alrim3con13v 42153 bgoldbtbndlem4 45260 |
Copyright terms: Public domain | W3C validator |