| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jcad | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3jcad.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jcad.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | 3jcad.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 4 | 3 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 3jcad.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 7 | 2, 4, 6 | 3jca 1128 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
| 8 | 7 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: onfununi 8310 uzm1 12831 ixxssixx 13320 iccid 13351 iccsplit 13446 fzen 13502 lmodprop2d 20830 fbun 23727 hausflim 23868 icoopnst 24836 iocopnst 24837 abelth 26351 usgr2pth 29694 shsvs 31252 cnlnssadj 32009 fnrelpredd 35079 cvmlift2lem10 35299 endofsegid 36073 elicc3 36305 areacirclem1 37702 islvol2aN 39586 alrim3con13v 44523 ormkglobd 46873 bgoldbtbndlem4 47809 |
| Copyright terms: Public domain | W3C validator |