MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jcad Structured version   Visualization version   GIF version

Theorem 3jcad 1129
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
Hypotheses
Ref Expression
3jcad.1 (𝜑 → (𝜓𝜒))
3jcad.2 (𝜑 → (𝜓𝜃))
3jcad.3 (𝜑 → (𝜓𝜏))
Assertion
Ref Expression
3jcad (𝜑 → (𝜓 → (𝜒𝜃𝜏)))

Proof of Theorem 3jcad
StepHypRef Expression
1 3jcad.1 . . . 4 (𝜑 → (𝜓𝜒))
21imp 406 . . 3 ((𝜑𝜓) → 𝜒)
3 3jcad.2 . . . 4 (𝜑 → (𝜓𝜃))
43imp 406 . . 3 ((𝜑𝜓) → 𝜃)
5 3jcad.3 . . . 4 (𝜑 → (𝜓𝜏))
65imp 406 . . 3 ((𝜑𝜓) → 𝜏)
72, 4, 63jca 1128 . 2 ((𝜑𝜓) → (𝜒𝜃𝜏))
87ex 412 1 (𝜑 → (𝜓 → (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  onfununi  8397  uzm1  12941  ixxssixx  13421  iccid  13452  iccsplit  13545  fzen  13601  lmodprop2d  20944  fbun  23869  hausflim  24010  icoopnst  24988  iocopnst  24989  abelth  26503  usgr2pth  29800  shsvs  31355  cnlnssadj  32112  fnrelpredd  35065  cvmlift2lem10  35280  endofsegid  36049  elicc3  36283  areacirclem1  37668  islvol2aN  39549  alrim3con13v  44504  bgoldbtbndlem4  47682
  Copyright terms: Public domain W3C validator