MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jcad Structured version   Visualization version   GIF version

Theorem 3jcad 1127
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
Hypotheses
Ref Expression
3jcad.1 (𝜑 → (𝜓𝜒))
3jcad.2 (𝜑 → (𝜓𝜃))
3jcad.3 (𝜑 → (𝜓𝜏))
Assertion
Ref Expression
3jcad (𝜑 → (𝜓 → (𝜒𝜃𝜏)))

Proof of Theorem 3jcad
StepHypRef Expression
1 3jcad.1 . . . 4 (𝜑 → (𝜓𝜒))
21imp 406 . . 3 ((𝜑𝜓) → 𝜒)
3 3jcad.2 . . . 4 (𝜑 → (𝜓𝜃))
43imp 406 . . 3 ((𝜑𝜓) → 𝜃)
5 3jcad.3 . . . 4 (𝜑 → (𝜓𝜏))
65imp 406 . . 3 ((𝜑𝜓) → 𝜏)
72, 4, 63jca 1126 . 2 ((𝜑𝜓) → (𝜒𝜃𝜏))
87ex 412 1 (𝜑 → (𝜓 → (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  onfununi  8143  uzm1  12545  ixxssixx  13022  iccid  13053  iccsplit  13146  fzen  13202  lmodprop2d  20100  fbun  22899  hausflim  23040  icoopnst  24008  iocopnst  24009  abelth  25505  usgr2pth  28033  shsvs  29586  cnlnssadj  30343  fnrelpredd  32961  cvmlift2lem10  33174  endofsegid  34314  elicc3  34433  areacirclem1  35792  islvol2aN  37533  alrim3con13v  42042  bgoldbtbndlem4  45148
  Copyright terms: Public domain W3C validator