Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3jcad | Structured version Visualization version GIF version |
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) |
Ref | Expression |
---|---|
3jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
3jcad.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Ref | Expression |
---|---|
3jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jcad.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | imp 410 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | 3jcad.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
4 | 3 | imp 410 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 3jcad.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
6 | 5 | imp 410 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
7 | 2, 4, 6 | 3jca 1129 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
8 | 7 | ex 416 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: onfununi 8000 uzm1 12351 ixxssixx 12828 iccid 12859 iccsplit 12952 fzen 13008 lmodprop2d 19808 fbun 22584 hausflim 22725 icoopnst 23684 iocopnst 23685 abelth 25180 usgr2pth 27697 shsvs 29250 cnlnssadj 30007 fnrelpredd 32624 cvmlift2lem10 32837 endofsegid 34017 elicc3 34136 areacirclem1 35477 islvol2aN 37218 alrim3con13v 41675 bgoldbtbndlem4 44778 |
Copyright terms: Public domain | W3C validator |