MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jcad Structured version   Visualization version   GIF version

Theorem 3jcad 1129
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
Hypotheses
Ref Expression
3jcad.1 (𝜑 → (𝜓𝜒))
3jcad.2 (𝜑 → (𝜓𝜃))
3jcad.3 (𝜑 → (𝜓𝜏))
Assertion
Ref Expression
3jcad (𝜑 → (𝜓 → (𝜒𝜃𝜏)))

Proof of Theorem 3jcad
StepHypRef Expression
1 3jcad.1 . . . 4 (𝜑 → (𝜓𝜒))
21imp 406 . . 3 ((𝜑𝜓) → 𝜒)
3 3jcad.2 . . . 4 (𝜑 → (𝜓𝜃))
43imp 406 . . 3 ((𝜑𝜓) → 𝜃)
5 3jcad.3 . . . 4 (𝜑 → (𝜓𝜏))
65imp 406 . . 3 ((𝜑𝜓) → 𝜏)
72, 4, 63jca 1128 . 2 ((𝜑𝜓) → (𝜒𝜃𝜏))
87ex 412 1 (𝜑 → (𝜓 → (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  onfununi  8270  uzm1  12776  ixxssixx  13266  iccid  13297  iccsplit  13392  fzen  13448  lmodprop2d  20866  fbun  23775  hausflim  23916  icoopnst  24883  iocopnst  24884  abelth  26398  usgr2pth  29763  shsvs  31324  cnlnssadj  32081  fnrelpredd  35174  trssfir1om  35194  trssfir1omregs  35204  cvmlift2lem10  35428  endofsegid  36201  elicc3  36433  areacirclem1  37821  islvol2aN  39764  alrim3con13v  44690  ormkglobd  47035  bgoldbtbndlem4  47970
  Copyright terms: Public domain W3C validator