| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jcad | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3jcad.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jcad.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | 3jcad.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 4 | 3 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 3jcad.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 7 | 2, 4, 6 | 3jca 1128 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
| 8 | 7 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: onfununi 8313 uzm1 12838 ixxssixx 13327 iccid 13358 iccsplit 13453 fzen 13509 lmodprop2d 20837 fbun 23734 hausflim 23875 icoopnst 24843 iocopnst 24844 abelth 26358 usgr2pth 29701 shsvs 31259 cnlnssadj 32016 fnrelpredd 35086 cvmlift2lem10 35306 endofsegid 36080 elicc3 36312 areacirclem1 37709 islvol2aN 39593 alrim3con13v 44530 ormkglobd 46880 bgoldbtbndlem4 47813 |
| Copyright terms: Public domain | W3C validator |