| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jcad | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3jcad.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jcad.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | 3jcad.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 4 | 3 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 3jcad.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 7 | 2, 4, 6 | 3jca 1128 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
| 8 | 7 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: onfununi 8363 uzm1 12898 ixxssixx 13383 iccid 13414 iccsplit 13507 fzen 13563 lmodprop2d 20891 fbun 23795 hausflim 23936 icoopnst 24906 iocopnst 24907 abelth 26422 usgr2pth 29713 shsvs 31271 cnlnssadj 32028 fnrelpredd 35078 cvmlift2lem10 35292 endofsegid 36061 elicc3 36293 areacirclem1 37690 islvol2aN 39569 alrim3con13v 44525 ormkglobd 46862 bgoldbtbndlem4 47768 |
| Copyright terms: Public domain | W3C validator |