| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jcad | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3jcad.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jcad.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | 3jcad.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 4 | 3 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 3jcad.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 7 | 2, 4, 6 | 3jca 1128 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
| 8 | 7 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: onfununi 8270 uzm1 12776 ixxssixx 13266 iccid 13297 iccsplit 13392 fzen 13448 lmodprop2d 20866 fbun 23775 hausflim 23916 icoopnst 24883 iocopnst 24884 abelth 26398 usgr2pth 29763 shsvs 31324 cnlnssadj 32081 fnrelpredd 35174 trssfir1om 35194 trssfir1omregs 35204 cvmlift2lem10 35428 endofsegid 36201 elicc3 36433 areacirclem1 37821 islvol2aN 39764 alrim3con13v 44690 ormkglobd 47035 bgoldbtbndlem4 47970 |
| Copyright terms: Public domain | W3C validator |