MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jcad Structured version   Visualization version   GIF version

Theorem 3jcad 1129
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
Hypotheses
Ref Expression
3jcad.1 (𝜑 → (𝜓𝜒))
3jcad.2 (𝜑 → (𝜓𝜃))
3jcad.3 (𝜑 → (𝜓𝜏))
Assertion
Ref Expression
3jcad (𝜑 → (𝜓 → (𝜒𝜃𝜏)))

Proof of Theorem 3jcad
StepHypRef Expression
1 3jcad.1 . . . 4 (𝜑 → (𝜓𝜒))
21imp 406 . . 3 ((𝜑𝜓) → 𝜒)
3 3jcad.2 . . . 4 (𝜑 → (𝜓𝜃))
43imp 406 . . 3 ((𝜑𝜓) → 𝜃)
5 3jcad.3 . . . 4 (𝜑 → (𝜓𝜏))
65imp 406 . . 3 ((𝜑𝜓) → 𝜏)
72, 4, 63jca 1128 . 2 ((𝜑𝜓) → (𝜒𝜃𝜏))
87ex 412 1 (𝜑 → (𝜓 → (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  onfununi  8310  uzm1  12831  ixxssixx  13320  iccid  13351  iccsplit  13446  fzen  13502  lmodprop2d  20830  fbun  23727  hausflim  23868  icoopnst  24836  iocopnst  24837  abelth  26351  usgr2pth  29694  shsvs  31252  cnlnssadj  32009  fnrelpredd  35079  cvmlift2lem10  35299  endofsegid  36073  elicc3  36305  areacirclem1  37702  islvol2aN  39586  alrim3con13v  44523  ormkglobd  46873  bgoldbtbndlem4  47809
  Copyright terms: Public domain W3C validator