MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jcad Structured version   Visualization version   GIF version

Theorem 3jcad 1129
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
Hypotheses
Ref Expression
3jcad.1 (𝜑 → (𝜓𝜒))
3jcad.2 (𝜑 → (𝜓𝜃))
3jcad.3 (𝜑 → (𝜓𝜏))
Assertion
Ref Expression
3jcad (𝜑 → (𝜓 → (𝜒𝜃𝜏)))

Proof of Theorem 3jcad
StepHypRef Expression
1 3jcad.1 . . . 4 (𝜑 → (𝜓𝜒))
21imp 406 . . 3 ((𝜑𝜓) → 𝜒)
3 3jcad.2 . . . 4 (𝜑 → (𝜓𝜃))
43imp 406 . . 3 ((𝜑𝜓) → 𝜃)
5 3jcad.3 . . . 4 (𝜑 → (𝜓𝜏))
65imp 406 . . 3 ((𝜑𝜓) → 𝜏)
72, 4, 63jca 1128 . 2 ((𝜑𝜓) → (𝜒𝜃𝜏))
87ex 412 1 (𝜑 → (𝜓 → (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  onfununi  8264  uzm1  12773  ixxssixx  13262  iccid  13293  iccsplit  13388  fzen  13444  lmodprop2d  20827  fbun  23725  hausflim  23866  icoopnst  24834  iocopnst  24835  abelth  26349  usgr2pth  29709  shsvs  31267  cnlnssadj  32024  fnrelpredd  35056  cvmlift2lem10  35285  endofsegid  36059  elicc3  36291  areacirclem1  37688  islvol2aN  39571  alrim3con13v  44507  ormkglobd  46856  bgoldbtbndlem4  47792
  Copyright terms: Public domain W3C validator