MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jcad Structured version   Visualization version   GIF version

Theorem 3jcad 1128
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
Hypotheses
Ref Expression
3jcad.1 (𝜑 → (𝜓𝜒))
3jcad.2 (𝜑 → (𝜓𝜃))
3jcad.3 (𝜑 → (𝜓𝜏))
Assertion
Ref Expression
3jcad (𝜑 → (𝜓 → (𝜒𝜃𝜏)))

Proof of Theorem 3jcad
StepHypRef Expression
1 3jcad.1 . . . 4 (𝜑 → (𝜓𝜒))
21imp 407 . . 3 ((𝜑𝜓) → 𝜒)
3 3jcad.2 . . . 4 (𝜑 → (𝜓𝜃))
43imp 407 . . 3 ((𝜑𝜓) → 𝜃)
5 3jcad.3 . . . 4 (𝜑 → (𝜓𝜏))
65imp 407 . . 3 ((𝜑𝜓) → 𝜏)
72, 4, 63jca 1127 . 2 ((𝜑𝜓) → (𝜒𝜃𝜏))
87ex 413 1 (𝜑 → (𝜓 → (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  onfununi  8172  uzm1  12616  ixxssixx  13093  iccid  13124  iccsplit  13217  fzen  13273  lmodprop2d  20185  fbun  22991  hausflim  23132  icoopnst  24102  iocopnst  24103  abelth  25600  usgr2pth  28132  shsvs  29685  cnlnssadj  30442  fnrelpredd  33061  cvmlift2lem10  33274  endofsegid  34387  elicc3  34506  areacirclem1  35865  islvol2aN  37606  alrim3con13v  42153  bgoldbtbndlem4  45260
  Copyright terms: Public domain W3C validator