MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jcad Structured version   Visualization version   GIF version

Theorem 3jcad 1130
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
Hypotheses
Ref Expression
3jcad.1 (𝜑 → (𝜓𝜒))
3jcad.2 (𝜑 → (𝜓𝜃))
3jcad.3 (𝜑 → (𝜓𝜏))
Assertion
Ref Expression
3jcad (𝜑 → (𝜓 → (𝜒𝜃𝜏)))

Proof of Theorem 3jcad
StepHypRef Expression
1 3jcad.1 . . . 4 (𝜑 → (𝜓𝜒))
21imp 410 . . 3 ((𝜑𝜓) → 𝜒)
3 3jcad.2 . . . 4 (𝜑 → (𝜓𝜃))
43imp 410 . . 3 ((𝜑𝜓) → 𝜃)
5 3jcad.3 . . . 4 (𝜑 → (𝜓𝜏))
65imp 410 . . 3 ((𝜑𝜓) → 𝜏)
72, 4, 63jca 1129 . 2 ((𝜑𝜓) → (𝜒𝜃𝜏))
87ex 416 1 (𝜑 → (𝜓 → (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090
This theorem is referenced by:  onfununi  8000  uzm1  12351  ixxssixx  12828  iccid  12859  iccsplit  12952  fzen  13008  lmodprop2d  19808  fbun  22584  hausflim  22725  icoopnst  23684  iocopnst  23685  abelth  25180  usgr2pth  27697  shsvs  29250  cnlnssadj  30007  fnrelpredd  32624  cvmlift2lem10  32837  endofsegid  34017  elicc3  34136  areacirclem1  35477  islvol2aN  37218  alrim3con13v  41675  bgoldbtbndlem4  44778
  Copyright terms: Public domain W3C validator