| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbitrrdi | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. Useful for substituting an embedded consequent with a definition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbitrrdi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| imbitrrdi.2 | ⊢ (𝜃 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| imbitrrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrdi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imbitrrdi.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜃) |
| 4 | 1, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Copyright terms: Public domain | W3C validator |