Users' Mathboxes Mathbox for Hongxiu Chen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm3.48ALT Structured version   Visualization version   GIF version

Theorem pm3.48ALT 35524
Description: Alternate proof of pm3.48 961. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pm3.48ALT (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))

Proof of Theorem pm3.48ALT
StepHypRef Expression
1 simpl 481 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜑𝜓))
2 simpr 483 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜒𝜃))
31, 2orim12d 962 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator