| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3157 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | ralbidv 3157 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3046 |
| This theorem is referenced by: 3ralbidv 3205 6ralbidv 3207 cbvral3vw 3222 cbvral6vw 3224 cbvral3v 3346 rspc6v 3612 ralxpxfr2d 3615 poeq1 5552 soeq1 5570 isoeq1 7295 isoeq2 7296 isoeq3 7297 fnmpoovd 8069 xpord3inddlem 8136 smoeq 8322 xpf1o 9109 nqereu 10889 dedekind 11344 dedekindle 11345 seqcaopr2 14010 wrd2ind 14695 addcn2 15567 mulcn2 15569 mreexexd 17616 catlid 17651 catrid 17652 isfunc 17833 funcres2b 17866 isfull 17881 isfth 17885 fullres2c 17910 isnat 17919 evlfcl 18190 uncfcurf 18207 isprs 18264 isdrs 18269 ispos 18282 istos 18384 isdlat 18488 ismgmhm 18630 issubmgm 18636 sgrp1 18663 ismhm 18719 issubm 18737 sgrp2nmndlem4 18862 isnsg 19094 isghm 19154 isghmOLD 19155 isga 19230 pmtrdifwrdel 19422 sylow2blem2 19558 efglem 19653 efgi 19656 efgredlemb 19683 efgred 19685 frgpuplem 19709 iscmn 19726 ring1 20226 isirred 20335 rnghmval 20356 isrnghm 20357 islmod 20777 lmodlema 20778 lssset 20846 islssd 20848 islmhm 20941 islmhm2 20952 isobs 21636 dmatel 22387 dmatmulcl 22394 scmateALT 22406 mdetunilem3 22508 mdetunilem4 22509 mdetunilem9 22514 cpmatel 22605 chpscmat 22736 hausnei2 23247 dfconn2 23313 llyeq 23364 nllyeq 23365 isucn2 24173 iducn 24177 ispsmet 24199 ismet 24218 isxmet 24219 metucn 24466 ngptgp 24531 nlmvscnlem1 24581 xmetdcn2 24733 addcnlem 24760 elcncf 24789 ipcnlem1 25152 cfili 25175 c1lip1 25909 aalioulem5 26251 aalioulem6 26252 aaliou 26253 aaliou2 26255 aaliou2b 26256 ulmcau 26311 ulmdvlem3 26318 cxpcn3lem 26664 mpodvdsmulf1o 27111 dvdsmulf1o 27113 chpdifbndlem2 27472 pntrsumbnd2 27485 addsprop 27890 negsprop 27948 istrkgb 28389 axtgsegcon 28398 axtg5seg 28399 axtgpasch 28401 axtgeucl 28406 iscgrg 28446 isismt 28468 isperp2 28649 f1otrg 28805 axcontlem10 28907 axcontlem12 28909 iscusgredg 29357 isgrpo 30433 isablo 30482 vacn 30630 smcnlem 30633 lnoval 30688 islno 30689 isphg 30753 ajmoi 30794 ajval 30797 adjmo 31768 elcnop 31793 ellnop 31794 elunop 31808 elhmop 31809 elcnfn 31818 ellnfn 31819 adjeu 31825 adjval 31826 adj1 31869 adjeq 31871 cnlnadjlem9 32011 cnlnadjeu 32014 cnlnssadj 32016 isst 32149 ishst 32150 cdj1i 32369 cdj3i 32377 resspos 32899 resstos 32900 ismnt 32916 mgcval 32920 isomnd 33022 isslmd 33162 slmdlema 33163 isorng 33284 prmidlval 33415 isprmidl 33416 isrprm 33495 qqhucn 33989 ismntop 34023 axtgupdim2ALTV 34666 txpconn 35226 nn0prpw 36318 heicant 37656 equivbnd 37791 isismty 37802 heibor1lem 37810 iccbnd 37841 isass 37847 elghomlem1OLD 37886 elghomlem2OLD 37887 isrngohom 37966 iscom2 37996 pridlval 38034 ispridl 38035 isdmn3 38075 inecmo 38344 islfl 39060 isopos 39180 psubspset 39745 islaut 40084 ispautN 40100 ltrnset 40119 isltrn 40120 istrnN 40158 istendo 40761 sticksstones1 42141 sticksstones2 42142 sticksstones3 42143 sticksstones8 42148 sticksstones10 42150 sticksstones11 42151 sticksstones12a 42152 sticksstones15 42156 sn-isghm 42668 clsk1independent 44042 relpeq1 44941 relpeq2 44942 relpeq3 44943 sprsymrelfolem2 47498 sprsymrelfo 47502 reuopreuprim 47531 dmatALTbasel 48395 lindslinindsimp2 48456 lmod1 48485 isnrm4 48923 iscnrm4 48946 isuplem 49172 isthinc 49412 thincciso 49446 thinccisod 49447 |
| Copyright terms: Public domain | W3C validator |