![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3178 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | ralbidv 3178 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ral 3063 |
This theorem is referenced by: 3ralbidv 3222 6ralbidv 3224 cbvral3vw 3241 cbvral6vw 3243 cbvral3v 3367 rspc6v 3632 ralxpxfr2d 3635 poeq1 5592 soeq1 5610 isoeq1 7314 isoeq2 7315 isoeq3 7316 fnmpoovd 8073 xpord3inddlem 8140 smoeq 8350 xpf1o 9139 nqereu 10924 dedekind 11377 dedekindle 11378 seqcaopr2 14004 wrd2ind 14673 addcn2 15538 mulcn2 15540 mreexexd 17592 catlid 17627 catrid 17628 isfunc 17814 funcres2b 17847 isfull 17861 isfth 17865 fullres2c 17890 isnat 17898 evlfcl 18175 uncfcurf 18192 isprs 18250 isdrs 18254 ispos 18267 istos 18371 isdlat 18475 sgrp1 18620 ismhm 18673 issubm 18684 sgrp2nmndlem4 18809 isnsg 19035 isghm 19092 isga 19155 pmtrdifwrdel 19353 sylow2blem2 19489 efglem 19584 efgi 19587 efgredlemb 19614 efgred 19616 frgpuplem 19640 iscmn 19657 ring1 20122 isirred 20233 islmod 20475 lmodlema 20476 lssset 20544 islssd 20546 islmhm 20638 islmhm2 20649 isobs 21275 dmatel 21995 dmatmulcl 22002 scmateALT 22014 mdetunilem3 22116 mdetunilem4 22117 mdetunilem9 22122 cpmatel 22213 chpscmat 22344 hausnei2 22857 dfconn2 22923 llyeq 22974 nllyeq 22975 isucn2 23784 iducn 23788 ispsmet 23810 ismet 23829 isxmet 23830 metucn 24080 ngptgp 24145 nlmvscnlem1 24203 xmetdcn2 24353 addcnlem 24380 elcncf 24405 ipcnlem1 24762 cfili 24785 c1lip1 25514 aalioulem5 25849 aalioulem6 25850 aaliou 25851 aaliou2 25853 aaliou2b 25854 ulmcau 25907 ulmdvlem3 25914 cxpcn3lem 26255 dvdsmulf1o 26698 chpdifbndlem2 27057 pntrsumbnd2 27070 addsprop 27460 negsprop 27509 istrkgb 27706 axtgsegcon 27715 axtg5seg 27716 axtgpasch 27718 axtgeucl 27723 iscgrg 27763 isismt 27785 isperp2 27966 f1otrg 28122 axcontlem10 28231 axcontlem12 28233 iscusgredg 28680 isgrpo 29750 isablo 29799 vacn 29947 smcnlem 29950 lnoval 30005 islno 30006 isphg 30070 ajmoi 30111 ajval 30114 adjmo 31085 elcnop 31110 ellnop 31111 elunop 31125 elhmop 31126 elcnfn 31135 ellnfn 31136 adjeu 31142 adjval 31143 adj1 31186 adjeq 31188 cnlnadjlem9 31328 cnlnadjeu 31331 cnlnssadj 31333 isst 31466 ishst 31467 cdj1i 31686 cdj3i 31694 resspos 32136 resstos 32137 ismnt 32153 mgcval 32157 isomnd 32219 isslmd 32347 slmdlema 32348 isorng 32417 prmidlval 32555 isprmidl 32556 isrprm 32634 qqhucn 32972 ismntop 33006 axtgupdim2ALTV 33680 txpconn 34223 nn0prpw 35208 heicant 36523 equivbnd 36658 isismty 36669 heibor1lem 36677 iccbnd 36708 isass 36714 elghomlem1OLD 36753 elghomlem2OLD 36754 isrngohom 36833 iscom2 36863 pridlval 36901 ispridl 36902 isdmn3 36942 inecmo 37224 islfl 37930 isopos 38050 psubspset 38615 islaut 38954 ispautN 38970 ltrnset 38989 isltrn 38990 istrnN 39028 istendo 39631 sticksstones1 40962 sticksstones2 40963 sticksstones3 40964 sticksstones8 40969 sticksstones10 40971 sticksstones11 40972 sticksstones12a 40973 sticksstones15 40977 clsk1independent 42797 sprsymrelfolem2 46161 sprsymrelfo 46165 reuopreuprim 46194 ismgmhm 46553 issubmgm 46559 rnghmval 46689 isrnghm 46690 dmatALTbasel 47083 lindslinindsimp2 47144 lmod1 47173 isnrm4 47563 iscnrm4 47587 isthinc 47641 thincciso 47669 |
Copyright terms: Public domain | W3C validator |