![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3184 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | ralbidv 3184 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 |
This theorem is referenced by: 3ralbidv 3230 6ralbidv 3232 cbvral3vw 3249 cbvral6vw 3251 cbvral3v 3378 rspc6v 3656 ralxpxfr2d 3659 poeq1 5610 soeq1 5629 isoeq1 7353 isoeq2 7354 isoeq3 7355 fnmpoovd 8128 xpord3inddlem 8195 smoeq 8406 xpf1o 9205 nqereu 10998 dedekind 11453 dedekindle 11454 seqcaopr2 14089 wrd2ind 14771 addcn2 15640 mulcn2 15642 mreexexd 17706 catlid 17741 catrid 17742 isfunc 17928 funcres2b 17961 isfull 17977 isfth 17981 fullres2c 18006 isnat 18015 evlfcl 18292 uncfcurf 18309 isprs 18367 isdrs 18371 ispos 18384 istos 18488 isdlat 18592 ismgmhm 18734 issubmgm 18740 sgrp1 18767 ismhm 18820 issubm 18838 sgrp2nmndlem4 18963 isnsg 19195 isghm 19255 isghmOLD 19256 isga 19331 pmtrdifwrdel 19527 sylow2blem2 19663 efglem 19758 efgi 19761 efgredlemb 19788 efgred 19790 frgpuplem 19814 iscmn 19831 ring1 20333 isirred 20445 rnghmval 20466 isrnghm 20467 islmod 20884 lmodlema 20885 lssset 20954 islssd 20956 islmhm 21049 islmhm2 21060 isobs 21763 dmatel 22520 dmatmulcl 22527 scmateALT 22539 mdetunilem3 22641 mdetunilem4 22642 mdetunilem9 22647 cpmatel 22738 chpscmat 22869 hausnei2 23382 dfconn2 23448 llyeq 23499 nllyeq 23500 isucn2 24309 iducn 24313 ispsmet 24335 ismet 24354 isxmet 24355 metucn 24605 ngptgp 24670 nlmvscnlem1 24728 xmetdcn2 24878 addcnlem 24905 elcncf 24934 ipcnlem1 25298 cfili 25321 c1lip1 26056 aalioulem5 26396 aalioulem6 26397 aaliou 26398 aaliou2 26400 aaliou2b 26401 ulmcau 26456 ulmdvlem3 26463 cxpcn3lem 26808 mpodvdsmulf1o 27255 dvdsmulf1o 27257 chpdifbndlem2 27616 pntrsumbnd2 27629 addsprop 28027 negsprop 28085 istrkgb 28481 axtgsegcon 28490 axtg5seg 28491 axtgpasch 28493 axtgeucl 28498 iscgrg 28538 isismt 28560 isperp2 28741 f1otrg 28897 axcontlem10 29006 axcontlem12 29008 iscusgredg 29458 isgrpo 30529 isablo 30578 vacn 30726 smcnlem 30729 lnoval 30784 islno 30785 isphg 30849 ajmoi 30890 ajval 30893 adjmo 31864 elcnop 31889 ellnop 31890 elunop 31904 elhmop 31905 elcnfn 31914 ellnfn 31915 adjeu 31921 adjval 31922 adj1 31965 adjeq 31967 cnlnadjlem9 32107 cnlnadjeu 32110 cnlnssadj 32112 isst 32245 ishst 32246 cdj1i 32465 cdj3i 32473 resspos 32939 resstos 32940 ismnt 32956 mgcval 32960 isomnd 33051 isslmd 33181 slmdlema 33182 isorng 33294 prmidlval 33430 isprmidl 33431 isrprm 33510 qqhucn 33938 ismntop 33972 axtgupdim2ALTV 34645 txpconn 35200 nn0prpw 36289 heicant 37615 equivbnd 37750 isismty 37761 heibor1lem 37769 iccbnd 37800 isass 37806 elghomlem1OLD 37845 elghomlem2OLD 37846 isrngohom 37925 iscom2 37955 pridlval 37993 ispridl 37994 isdmn3 38034 inecmo 38311 islfl 39016 isopos 39136 psubspset 39701 islaut 40040 ispautN 40056 ltrnset 40075 isltrn 40076 istrnN 40114 istendo 40717 sticksstones1 42103 sticksstones2 42104 sticksstones3 42105 sticksstones8 42110 sticksstones10 42112 sticksstones11 42113 sticksstones12a 42114 sticksstones15 42118 sn-isghm 42628 clsk1independent 44008 sprsymrelfolem2 47367 sprsymrelfo 47371 reuopreuprim 47400 dmatALTbasel 48131 lindslinindsimp2 48192 lmod1 48221 isnrm4 48610 iscnrm4 48634 isthinc 48688 thincciso 48716 |
Copyright terms: Public domain | W3C validator |