| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3152 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | ralbidv 3152 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: 3ralbidv 3196 6ralbidv 3198 cbvral3vw 3213 cbvral6vw 3215 cbvral3v 3333 rspc6v 3598 ralxpxfr2d 3601 poeq1 5530 soeq1 5548 isoeq1 7254 isoeq2 7255 isoeq3 7256 fnmpoovd 8020 xpord3inddlem 8087 smoeq 8273 xpf1o 9056 nqereu 10823 dedekind 11279 dedekindle 11280 seqcaopr2 13945 wrd2ind 14629 addcn2 15501 mulcn2 15503 mreexexd 17554 catlid 17589 catrid 17590 isfunc 17771 funcres2b 17804 isfull 17819 isfth 17823 fullres2c 17848 isnat 17857 evlfcl 18128 uncfcurf 18145 isprs 18202 isdrs 18207 ispos 18220 istos 18322 resspos 18335 resstos 18336 isdlat 18428 ismgmhm 18570 issubmgm 18576 sgrp1 18603 ismhm 18659 issubm 18677 sgrp2nmndlem4 18802 isnsg 19034 isghm 19094 isghmOLD 19095 isga 19170 pmtrdifwrdel 19364 sylow2blem2 19500 efglem 19595 efgi 19598 efgredlemb 19625 efgred 19627 frgpuplem 19651 iscmn 19668 isomnd 20002 ring1 20195 isirred 20304 rnghmval 20325 isrnghm 20326 isorng 20746 islmod 20767 lmodlema 20768 lssset 20836 islssd 20838 islmhm 20931 islmhm2 20942 isobs 21627 dmatel 22378 dmatmulcl 22385 scmateALT 22397 mdetunilem3 22499 mdetunilem4 22500 mdetunilem9 22505 cpmatel 22596 chpscmat 22727 hausnei2 23238 dfconn2 23304 llyeq 23355 nllyeq 23356 isucn2 24164 iducn 24168 ispsmet 24190 ismet 24209 isxmet 24210 metucn 24457 ngptgp 24522 nlmvscnlem1 24572 xmetdcn2 24724 addcnlem 24751 elcncf 24780 ipcnlem1 25143 cfili 25166 c1lip1 25900 aalioulem5 26242 aalioulem6 26243 aaliou 26244 aaliou2 26246 aaliou2b 26247 ulmcau 26302 ulmdvlem3 26309 cxpcn3lem 26655 mpodvdsmulf1o 27102 dvdsmulf1o 27104 chpdifbndlem2 27463 pntrsumbnd2 27476 addsprop 27888 negsprop 27946 istrkgb 28400 axtgsegcon 28409 axtg5seg 28410 axtgpasch 28412 axtgeucl 28417 iscgrg 28457 isismt 28479 isperp2 28660 f1otrg 28816 axcontlem10 28918 axcontlem12 28920 iscusgredg 29368 isgrpo 30441 isablo 30490 vacn 30638 smcnlem 30641 lnoval 30696 islno 30697 isphg 30761 ajmoi 30802 ajval 30805 adjmo 31776 elcnop 31801 ellnop 31802 elunop 31816 elhmop 31817 elcnfn 31826 ellnfn 31827 adjeu 31833 adjval 31834 adj1 31877 adjeq 31879 cnlnadjlem9 32019 cnlnadjeu 32022 cnlnssadj 32024 isst 32157 ishst 32158 cdj1i 32377 cdj3i 32385 ismnt 32926 mgcval 32930 isslmd 33145 slmdlema 33146 prmidlval 33375 isprmidl 33376 isrprm 33455 qqhucn 33965 ismntop 33999 axtgupdim2ALTV 34642 txpconn 35215 nn0prpw 36307 heicant 37645 equivbnd 37780 isismty 37791 heibor1lem 37799 iccbnd 37830 isass 37836 elghomlem1OLD 37875 elghomlem2OLD 37876 isrngohom 37955 iscom2 37985 pridlval 38023 ispridl 38024 isdmn3 38064 inecmo 38333 islfl 39049 isopos 39169 psubspset 39733 islaut 40072 ispautN 40088 ltrnset 40107 isltrn 40108 istrnN 40146 istendo 40749 sticksstones1 42129 sticksstones2 42130 sticksstones3 42131 sticksstones8 42136 sticksstones10 42138 sticksstones11 42139 sticksstones12a 42140 sticksstones15 42144 sn-isghm 42656 clsk1independent 44029 relpeq1 44928 relpeq2 44929 relpeq3 44930 sprsymrelfolem2 47487 sprsymrelfo 47491 reuopreuprim 47520 dmatALTbasel 48397 lindslinindsimp2 48458 lmod1 48487 isnrm4 48925 iscnrm4 48948 isuplem 49174 isthinc 49414 thincciso 49448 thinccisod 49449 |
| Copyright terms: Public domain | W3C validator |