![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3177 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | ralbidv 3177 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3062 |
This theorem is referenced by: 3ralbidv 3221 6ralbidv 3223 cbvral3vw 3240 cbvral6vw 3242 cbvral3v 3366 rspc6v 3631 ralxpxfr2d 3634 poeq1 5591 soeq1 5609 isoeq1 7313 isoeq2 7314 isoeq3 7315 fnmpoovd 8072 xpord3inddlem 8139 smoeq 8349 xpf1o 9138 nqereu 10923 dedekind 11376 dedekindle 11377 seqcaopr2 14003 wrd2ind 14672 addcn2 15537 mulcn2 15539 mreexexd 17591 catlid 17626 catrid 17627 isfunc 17813 funcres2b 17846 isfull 17860 isfth 17864 fullres2c 17889 isnat 17897 evlfcl 18174 uncfcurf 18191 isprs 18249 isdrs 18253 ispos 18266 istos 18370 isdlat 18474 sgrp1 18619 ismhm 18672 issubm 18683 sgrp2nmndlem4 18808 isnsg 19034 isghm 19091 isga 19154 pmtrdifwrdel 19352 sylow2blem2 19488 efglem 19583 efgi 19586 efgredlemb 19613 efgred 19615 frgpuplem 19639 iscmn 19656 ring1 20121 isirred 20232 islmod 20474 lmodlema 20475 lssset 20543 islssd 20545 islmhm 20637 islmhm2 20648 isobs 21274 dmatel 21994 dmatmulcl 22001 scmateALT 22013 mdetunilem3 22115 mdetunilem4 22116 mdetunilem9 22121 cpmatel 22212 chpscmat 22343 hausnei2 22856 dfconn2 22922 llyeq 22973 nllyeq 22974 isucn2 23783 iducn 23787 ispsmet 23809 ismet 23828 isxmet 23829 metucn 24079 ngptgp 24144 nlmvscnlem1 24202 xmetdcn2 24352 addcnlem 24379 elcncf 24404 ipcnlem1 24761 cfili 24784 c1lip1 25513 aalioulem5 25848 aalioulem6 25849 aaliou 25850 aaliou2 25852 aaliou2b 25853 ulmcau 25906 ulmdvlem3 25913 cxpcn3lem 26252 dvdsmulf1o 26695 chpdifbndlem2 27054 pntrsumbnd2 27067 addsprop 27457 negsprop 27506 istrkgb 27703 axtgsegcon 27712 axtg5seg 27713 axtgpasch 27715 axtgeucl 27720 iscgrg 27760 isismt 27782 isperp2 27963 f1otrg 28119 axcontlem10 28228 axcontlem12 28230 iscusgredg 28677 isgrpo 29745 isablo 29794 vacn 29942 smcnlem 29945 lnoval 30000 islno 30001 isphg 30065 ajmoi 30106 ajval 30109 adjmo 31080 elcnop 31105 ellnop 31106 elunop 31120 elhmop 31121 elcnfn 31130 ellnfn 31131 adjeu 31137 adjval 31138 adj1 31181 adjeq 31183 cnlnadjlem9 31323 cnlnadjeu 31326 cnlnssadj 31328 isst 31461 ishst 31462 cdj1i 31681 cdj3i 31689 resspos 32131 resstos 32132 ismnt 32148 mgcval 32152 isomnd 32214 isslmd 32342 slmdlema 32343 isorng 32412 prmidlval 32550 isprmidl 32551 isrprm 32629 qqhucn 32967 ismntop 33001 axtgupdim2ALTV 33675 txpconn 34218 nn0prpw 35203 heicant 36518 equivbnd 36653 isismty 36664 heibor1lem 36672 iccbnd 36703 isass 36709 elghomlem1OLD 36748 elghomlem2OLD 36749 isrngohom 36828 iscom2 36858 pridlval 36896 ispridl 36897 isdmn3 36937 inecmo 37219 islfl 37925 isopos 38045 psubspset 38610 islaut 38949 ispautN 38965 ltrnset 38984 isltrn 38985 istrnN 39023 istendo 39626 sticksstones1 40957 sticksstones2 40958 sticksstones3 40959 sticksstones8 40964 sticksstones10 40966 sticksstones11 40967 sticksstones12a 40968 sticksstones15 40972 clsk1independent 42787 sprsymrelfolem2 46151 sprsymrelfo 46155 reuopreuprim 46184 ismgmhm 46543 issubmgm 46549 rnghmval 46679 isrnghm 46680 dmatALTbasel 47073 lindslinindsimp2 47134 lmod1 47163 isnrm4 47553 iscnrm4 47577 isthinc 47631 thincciso 47659 |
Copyright terms: Public domain | W3C validator |