Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3120 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | ralbidv 3120 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 |
This theorem is referenced by: cbvral3vw 3387 cbvral3v 3390 ralxpxfr2d 3568 poeq1 5497 soeq1 5515 isoeq1 7168 isoeq2 7169 isoeq3 7170 fnmpoovd 7898 smoeq 8152 xpf1o 8875 nqereu 10616 dedekind 11068 dedekindle 11069 seqcaopr2 13687 wrd2ind 14364 addcn2 15231 mulcn2 15233 mreexexd 17274 catlid 17309 catrid 17310 isfunc 17495 funcres2b 17528 isfull 17542 isfth 17546 fullres2c 17571 isnat 17579 evlfcl 17856 uncfcurf 17873 isprs 17930 isdrs 17934 ispos 17947 istos 18051 isdlat 18155 sgrp1 18299 ismhm 18347 issubm 18357 sgrp2nmndlem4 18482 isnsg 18698 isghm 18749 isga 18812 pmtrdifwrdel 19008 sylow2blem2 19141 efglem 19237 efgi 19240 efgredlemb 19267 efgred 19269 frgpuplem 19293 iscmn 19309 ring1 19756 isirred 19856 islmod 20042 lmodlema 20043 lssset 20110 islssd 20112 islmhm 20204 islmhm2 20215 isobs 20837 dmatel 21550 dmatmulcl 21557 scmateALT 21569 mdetunilem3 21671 mdetunilem4 21672 mdetunilem9 21677 cpmatel 21768 chpscmat 21899 hausnei2 22412 dfconn2 22478 llyeq 22529 nllyeq 22530 isucn2 23339 iducn 23343 ispsmet 23365 ismet 23384 isxmet 23385 metucn 23633 ngptgp 23698 nlmvscnlem1 23756 xmetdcn2 23906 addcnlem 23933 elcncf 23958 ipcnlem1 24314 cfili 24337 c1lip1 25066 aalioulem5 25401 aalioulem6 25402 aaliou 25403 aaliou2 25405 aaliou2b 25406 ulmcau 25459 ulmdvlem3 25466 cxpcn3lem 25805 dvdsmulf1o 26248 chpdifbndlem2 26607 pntrsumbnd2 26620 istrkgb 26720 axtgsegcon 26729 axtg5seg 26730 axtgpasch 26732 axtgeucl 26737 iscgrg 26777 isismt 26799 isperp2 26980 f1otrg 27136 axcontlem10 27244 axcontlem12 27246 iscusgredg 27693 isgrpo 28760 isablo 28809 vacn 28957 smcnlem 28960 lnoval 29015 islno 29016 isphg 29080 ajmoi 29121 ajval 29124 adjmo 30095 elcnop 30120 ellnop 30121 elunop 30135 elhmop 30136 elcnfn 30145 ellnfn 30146 adjeu 30152 adjval 30153 adj1 30196 adjeq 30198 cnlnadjlem9 30338 cnlnadjeu 30341 cnlnssadj 30343 isst 30476 ishst 30477 cdj1i 30696 cdj3i 30704 resspos 31146 resstos 31147 ismnt 31163 mgcval 31167 isomnd 31229 isslmd 31357 slmdlema 31358 isorng 31400 prmidlval 31514 isprmidl 31515 isrprm 31567 qqhucn 31842 ismntop 31876 axtgupdim2ALTV 32548 txpconn 33094 xpord3ind 33727 nn0prpw 34439 heicant 35739 equivbnd 35875 isismty 35886 heibor1lem 35894 iccbnd 35925 isass 35931 elghomlem1OLD 35970 elghomlem2OLD 35971 isrngohom 36050 iscom2 36080 pridlval 36118 ispridl 36119 isdmn3 36159 inecmo 36414 islfl 37001 isopos 37121 psubspset 37685 islaut 38024 ispautN 38040 ltrnset 38059 isltrn 38060 istrnN 38098 istendo 38701 sticksstones1 40030 sticksstones2 40031 sticksstones3 40032 sticksstones8 40037 sticksstones10 40039 sticksstones11 40040 sticksstones12a 40041 sticksstones15 40045 clsk1independent 41545 sprsymrelfolem2 44833 sprsymrelfo 44837 reuopreuprim 44866 ismgmhm 45225 issubmgm 45231 rnghmval 45337 isrnghm 45338 lidlmsgrp 45372 lidlrng 45373 dmatALTbasel 45631 lindslinindsimp2 45692 lmod1 45721 isnrm4 46112 iscnrm4 46136 isthinc 46190 thincciso 46218 |
Copyright terms: Public domain | W3C validator |