| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3163 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | ralbidv 3163 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3052 |
| This theorem is referenced by: 3ralbidv 3208 6ralbidv 3210 cbvral3vw 3226 cbvral6vw 3228 cbvral3v 3349 rspc6v 3622 ralxpxfr2d 3625 poeq1 5564 soeq1 5582 isoeq1 7309 isoeq2 7310 isoeq3 7311 fnmpoovd 8084 xpord3inddlem 8151 smoeq 8362 xpf1o 9151 nqereu 10941 dedekind 11396 dedekindle 11397 seqcaopr2 14054 wrd2ind 14739 addcn2 15608 mulcn2 15610 mreexexd 17658 catlid 17693 catrid 17694 isfunc 17875 funcres2b 17908 isfull 17923 isfth 17927 fullres2c 17952 isnat 17961 evlfcl 18232 uncfcurf 18249 isprs 18306 isdrs 18311 ispos 18324 istos 18426 isdlat 18530 ismgmhm 18672 issubmgm 18678 sgrp1 18705 ismhm 18761 issubm 18779 sgrp2nmndlem4 18904 isnsg 19136 isghm 19196 isghmOLD 19197 isga 19272 pmtrdifwrdel 19464 sylow2blem2 19600 efglem 19695 efgi 19698 efgredlemb 19725 efgred 19727 frgpuplem 19751 iscmn 19768 ring1 20268 isirred 20377 rnghmval 20398 isrnghm 20399 islmod 20819 lmodlema 20820 lssset 20888 islssd 20890 islmhm 20983 islmhm2 20994 isobs 21678 dmatel 22429 dmatmulcl 22436 scmateALT 22448 mdetunilem3 22550 mdetunilem4 22551 mdetunilem9 22556 cpmatel 22647 chpscmat 22778 hausnei2 23289 dfconn2 23355 llyeq 23406 nllyeq 23407 isucn2 24215 iducn 24219 ispsmet 24241 ismet 24260 isxmet 24261 metucn 24508 ngptgp 24573 nlmvscnlem1 24623 xmetdcn2 24775 addcnlem 24802 elcncf 24831 ipcnlem1 25195 cfili 25218 c1lip1 25952 aalioulem5 26294 aalioulem6 26295 aaliou 26296 aaliou2 26298 aaliou2b 26299 ulmcau 26354 ulmdvlem3 26361 cxpcn3lem 26707 mpodvdsmulf1o 27154 dvdsmulf1o 27156 chpdifbndlem2 27515 pntrsumbnd2 27528 addsprop 27926 negsprop 27984 istrkgb 28380 axtgsegcon 28389 axtg5seg 28390 axtgpasch 28392 axtgeucl 28397 iscgrg 28437 isismt 28459 isperp2 28640 f1otrg 28796 axcontlem10 28898 axcontlem12 28900 iscusgredg 29348 isgrpo 30424 isablo 30473 vacn 30621 smcnlem 30624 lnoval 30679 islno 30680 isphg 30744 ajmoi 30785 ajval 30788 adjmo 31759 elcnop 31784 ellnop 31785 elunop 31799 elhmop 31800 elcnfn 31809 ellnfn 31810 adjeu 31816 adjval 31817 adj1 31860 adjeq 31862 cnlnadjlem9 32002 cnlnadjeu 32005 cnlnssadj 32007 isst 32140 ishst 32141 cdj1i 32360 cdj3i 32368 resspos 32892 resstos 32893 ismnt 32909 mgcval 32913 isomnd 33015 isslmd 33145 slmdlema 33146 isorng 33267 prmidlval 33398 isprmidl 33399 isrprm 33478 qqhucn 33969 ismntop 34003 axtgupdim2ALTV 34646 txpconn 35200 nn0prpw 36287 heicant 37625 equivbnd 37760 isismty 37771 heibor1lem 37779 iccbnd 37810 isass 37816 elghomlem1OLD 37855 elghomlem2OLD 37856 isrngohom 37935 iscom2 37965 pridlval 38003 ispridl 38004 isdmn3 38044 inecmo 38319 islfl 39024 isopos 39144 psubspset 39709 islaut 40048 ispautN 40064 ltrnset 40083 isltrn 40084 istrnN 40122 istendo 40725 sticksstones1 42105 sticksstones2 42106 sticksstones3 42107 sticksstones8 42112 sticksstones10 42114 sticksstones11 42115 sticksstones12a 42116 sticksstones15 42120 sn-isghm 42643 clsk1independent 44017 relpeq1 44917 relpeq2 44918 relpeq3 44919 sprsymrelfolem2 47455 sprsymrelfo 47459 reuopreuprim 47488 dmatALTbasel 48326 lindslinindsimp2 48387 lmod1 48416 isnrm4 48853 iscnrm4 48876 isuplem 49062 isthinc 49253 thincciso 49287 thinccisod 49288 |
| Copyright terms: Public domain | W3C validator |