Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3171 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | ralbidv 3171 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3063 |
This theorem is referenced by: cbvral3vw 3226 cbvral3v 3340 ralxpxfr2d 3585 poeq1 5524 soeq1 5542 isoeq1 7227 isoeq2 7228 isoeq3 7229 fnmpoovd 7972 smoeq 8228 xpf1o 8981 nqereu 10758 dedekind 11211 dedekindle 11212 seqcaopr2 13832 wrd2ind 14508 addcn2 15375 mulcn2 15377 mreexexd 17427 catlid 17462 catrid 17463 isfunc 17649 funcres2b 17682 isfull 17696 isfth 17700 fullres2c 17725 isnat 17733 evlfcl 18010 uncfcurf 18027 isprs 18085 isdrs 18089 ispos 18102 istos 18206 isdlat 18310 sgrp1 18454 ismhm 18502 issubm 18512 sgrp2nmndlem4 18636 isnsg 18852 isghm 18903 isga 18966 pmtrdifwrdel 19162 sylow2blem2 19295 efglem 19390 efgi 19393 efgredlemb 19420 efgred 19422 frgpuplem 19446 iscmn 19462 ring1 19909 isirred 20009 islmod 20199 lmodlema 20200 lssset 20267 islssd 20269 islmhm 20361 islmhm2 20372 isobs 20999 dmatel 21714 dmatmulcl 21721 scmateALT 21733 mdetunilem3 21835 mdetunilem4 21836 mdetunilem9 21841 cpmatel 21932 chpscmat 22063 hausnei2 22576 dfconn2 22642 llyeq 22693 nllyeq 22694 isucn2 23503 iducn 23507 ispsmet 23529 ismet 23548 isxmet 23549 metucn 23799 ngptgp 23864 nlmvscnlem1 23922 xmetdcn2 24072 addcnlem 24099 elcncf 24124 ipcnlem1 24481 cfili 24504 c1lip1 25233 aalioulem5 25568 aalioulem6 25569 aaliou 25570 aaliou2 25572 aaliou2b 25573 ulmcau 25626 ulmdvlem3 25633 cxpcn3lem 25972 dvdsmulf1o 26415 chpdifbndlem2 26774 pntrsumbnd2 26787 istrkgb 26925 axtgsegcon 26934 axtg5seg 26935 axtgpasch 26937 axtgeucl 26942 iscgrg 26982 isismt 27004 isperp2 27185 f1otrg 27341 axcontlem10 27450 axcontlem12 27452 iscusgredg 27899 isgrpo 28968 isablo 29017 vacn 29165 smcnlem 29168 lnoval 29223 islno 29224 isphg 29288 ajmoi 29329 ajval 29332 adjmo 30303 elcnop 30328 ellnop 30329 elunop 30343 elhmop 30344 elcnfn 30353 ellnfn 30354 adjeu 30360 adjval 30361 adj1 30404 adjeq 30406 cnlnadjlem9 30546 cnlnadjeu 30549 cnlnssadj 30551 isst 30684 ishst 30685 cdj1i 30904 cdj3i 30912 resspos 31352 resstos 31353 ismnt 31369 mgcval 31373 isomnd 31435 isslmd 31563 slmdlema 31564 isorng 31606 prmidlval 31717 isprmidl 31718 isrprm 31770 qqhucn 32048 ismntop 32082 axtgupdim2ALTV 32754 txpconn 33299 xpord3ind 33898 nn0prpw 34570 heicant 35868 equivbnd 36004 isismty 36015 heibor1lem 36023 iccbnd 36054 isass 36060 elghomlem1OLD 36099 elghomlem2OLD 36100 isrngohom 36179 iscom2 36209 pridlval 36247 ispridl 36248 isdmn3 36288 inecmo 36572 islfl 37278 isopos 37398 psubspset 37963 islaut 38302 ispautN 38318 ltrnset 38337 isltrn 38338 istrnN 38376 istendo 38979 sticksstones1 40310 sticksstones2 40311 sticksstones3 40312 sticksstones8 40317 sticksstones10 40319 sticksstones11 40320 sticksstones12a 40321 sticksstones15 40325 clsk1independent 41877 sprsymrelfolem2 45197 sprsymrelfo 45201 reuopreuprim 45230 ismgmhm 45589 issubmgm 45595 rnghmval 45701 isrnghm 45702 lidlmsgrp 45736 lidlrng 45737 dmatALTbasel 45995 lindslinindsimp2 46056 lmod1 46085 isnrm4 46476 iscnrm4 46500 isthinc 46554 thincciso 46582 |
Copyright terms: Public domain | W3C validator |