| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3155 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | ralbidv 3155 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 |
| This theorem is referenced by: 3ralbidv 3199 6ralbidv 3201 cbvral3vw 3216 cbvral6vw 3218 cbvral3v 3336 rspc6v 3593 ralxpxfr2d 3596 poeq1 5525 soeq1 5543 isoeq1 7251 isoeq2 7252 isoeq3 7253 fnmpoovd 8017 xpord3inddlem 8084 smoeq 8270 xpf1o 9052 nqereu 10820 dedekind 11276 dedekindle 11277 seqcaopr2 13945 wrd2ind 14630 addcn2 15501 mulcn2 15503 mreexexd 17554 catlid 17589 catrid 17590 isfunc 17771 funcres2b 17804 isfull 17819 isfth 17823 fullres2c 17848 isnat 17857 evlfcl 18128 uncfcurf 18145 isprs 18202 isdrs 18207 ispos 18220 istos 18322 resspos 18335 resstos 18336 isdlat 18428 ismgmhm 18604 issubmgm 18610 sgrp1 18637 ismhm 18693 issubm 18711 sgrp2nmndlem4 18836 isnsg 19067 isghm 19127 isghmOLD 19128 isga 19203 pmtrdifwrdel 19397 sylow2blem2 19533 efglem 19628 efgi 19631 efgredlemb 19658 efgred 19660 frgpuplem 19684 iscmn 19701 isomnd 20035 ring1 20228 isirred 20337 rnghmval 20358 isrnghm 20359 isorng 20776 islmod 20797 lmodlema 20798 lssset 20866 islssd 20868 islmhm 20961 islmhm2 20972 isobs 21657 dmatel 22408 dmatmulcl 22415 scmateALT 22427 mdetunilem3 22529 mdetunilem4 22530 mdetunilem9 22535 cpmatel 22626 chpscmat 22757 hausnei2 23268 dfconn2 23334 llyeq 23385 nllyeq 23386 isucn2 24193 iducn 24197 ispsmet 24219 ismet 24238 isxmet 24239 metucn 24486 ngptgp 24551 nlmvscnlem1 24601 xmetdcn2 24753 addcnlem 24780 elcncf 24809 ipcnlem1 25172 cfili 25195 c1lip1 25929 aalioulem5 26271 aalioulem6 26272 aaliou 26273 aaliou2 26275 aaliou2b 26276 ulmcau 26331 ulmdvlem3 26338 cxpcn3lem 26684 mpodvdsmulf1o 27131 dvdsmulf1o 27133 chpdifbndlem2 27492 pntrsumbnd2 27505 addsprop 27919 negsprop 27977 istrkgb 28433 axtgsegcon 28442 axtg5seg 28443 axtgpasch 28445 axtgeucl 28450 iscgrg 28490 isismt 28512 isperp2 28693 f1otrg 28849 axcontlem10 28951 axcontlem12 28953 iscusgredg 29401 isgrpo 30477 isablo 30526 vacn 30674 smcnlem 30677 lnoval 30732 islno 30733 isphg 30797 ajmoi 30838 ajval 30841 adjmo 31812 elcnop 31837 ellnop 31838 elunop 31852 elhmop 31853 elcnfn 31862 ellnfn 31863 adjeu 31869 adjval 31870 adj1 31913 adjeq 31915 cnlnadjlem9 32055 cnlnadjeu 32058 cnlnssadj 32060 isst 32193 ishst 32194 cdj1i 32413 cdj3i 32421 ismnt 32964 mgcval 32968 isslmd 33171 slmdlema 33172 prmidlval 33402 isprmidl 33403 isrprm 33482 qqhucn 34005 ismntop 34039 axtgupdim2ALTV 34681 txpconn 35276 nn0prpw 36367 heicant 37705 equivbnd 37840 isismty 37851 heibor1lem 37859 iccbnd 37890 isass 37896 elghomlem1OLD 37935 elghomlem2OLD 37936 isrngohom 38015 iscom2 38045 pridlval 38083 ispridl 38084 isdmn3 38124 inecmo 38397 islfl 39169 isopos 39289 psubspset 39853 islaut 40192 ispautN 40208 ltrnset 40227 isltrn 40228 istrnN 40266 istendo 40869 sticksstones1 42249 sticksstones2 42250 sticksstones3 42251 sticksstones8 42256 sticksstones10 42258 sticksstones11 42259 sticksstones12a 42260 sticksstones15 42264 sn-isghm 42776 clsk1independent 44149 relpeq1 45047 relpeq2 45048 relpeq3 45049 sprsymrelfolem2 47603 sprsymrelfo 47607 reuopreuprim 47636 dmatALTbasel 48513 lindslinindsimp2 48574 lmod1 48603 isnrm4 49041 iscnrm4 49064 isuplem 49290 isthinc 49530 thincciso 49564 thinccisod 49565 |
| Copyright terms: Public domain | W3C validator |