![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3175 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | ralbidv 3175 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3059 |
This theorem is referenced by: 3ralbidv 3221 6ralbidv 3223 cbvral3vw 3240 cbvral6vw 3242 cbvral3v 3367 rspc6v 3642 ralxpxfr2d 3645 poeq1 5599 soeq1 5617 isoeq1 7336 isoeq2 7337 isoeq3 7338 fnmpoovd 8110 xpord3inddlem 8177 smoeq 8388 xpf1o 9177 nqereu 10966 dedekind 11421 dedekindle 11422 seqcaopr2 14075 wrd2ind 14757 addcn2 15626 mulcn2 15628 mreexexd 17692 catlid 17727 catrid 17728 isfunc 17914 funcres2b 17947 isfull 17963 isfth 17967 fullres2c 17992 isnat 18001 evlfcl 18278 uncfcurf 18295 isprs 18353 isdrs 18358 ispos 18371 istos 18475 isdlat 18579 ismgmhm 18721 issubmgm 18727 sgrp1 18754 ismhm 18810 issubm 18828 sgrp2nmndlem4 18953 isnsg 19185 isghm 19245 isghmOLD 19246 isga 19321 pmtrdifwrdel 19517 sylow2blem2 19653 efglem 19748 efgi 19751 efgredlemb 19778 efgred 19780 frgpuplem 19804 iscmn 19821 ring1 20323 isirred 20435 rnghmval 20456 isrnghm 20457 islmod 20878 lmodlema 20879 lssset 20948 islssd 20950 islmhm 21043 islmhm2 21054 isobs 21757 dmatel 22514 dmatmulcl 22521 scmateALT 22533 mdetunilem3 22635 mdetunilem4 22636 mdetunilem9 22641 cpmatel 22732 chpscmat 22863 hausnei2 23376 dfconn2 23442 llyeq 23493 nllyeq 23494 isucn2 24303 iducn 24307 ispsmet 24329 ismet 24348 isxmet 24349 metucn 24599 ngptgp 24664 nlmvscnlem1 24722 xmetdcn2 24872 addcnlem 24899 elcncf 24928 ipcnlem1 25292 cfili 25315 c1lip1 26050 aalioulem5 26392 aalioulem6 26393 aaliou 26394 aaliou2 26396 aaliou2b 26397 ulmcau 26452 ulmdvlem3 26459 cxpcn3lem 26804 mpodvdsmulf1o 27251 dvdsmulf1o 27253 chpdifbndlem2 27612 pntrsumbnd2 27625 addsprop 28023 negsprop 28081 istrkgb 28477 axtgsegcon 28486 axtg5seg 28487 axtgpasch 28489 axtgeucl 28494 iscgrg 28534 isismt 28556 isperp2 28737 f1otrg 28893 axcontlem10 29002 axcontlem12 29004 iscusgredg 29454 isgrpo 30525 isablo 30574 vacn 30722 smcnlem 30725 lnoval 30780 islno 30781 isphg 30845 ajmoi 30886 ajval 30889 adjmo 31860 elcnop 31885 ellnop 31886 elunop 31900 elhmop 31901 elcnfn 31910 ellnfn 31911 adjeu 31917 adjval 31918 adj1 31961 adjeq 31963 cnlnadjlem9 32103 cnlnadjeu 32106 cnlnssadj 32108 isst 32241 ishst 32242 cdj1i 32461 cdj3i 32469 resspos 32940 resstos 32941 ismnt 32957 mgcval 32961 isomnd 33060 isslmd 33190 slmdlema 33191 isorng 33308 prmidlval 33444 isprmidl 33445 isrprm 33524 qqhucn 33954 ismntop 33988 axtgupdim2ALTV 34661 txpconn 35216 nn0prpw 36305 heicant 37641 equivbnd 37776 isismty 37787 heibor1lem 37795 iccbnd 37826 isass 37832 elghomlem1OLD 37871 elghomlem2OLD 37872 isrngohom 37951 iscom2 37981 pridlval 38019 ispridl 38020 isdmn3 38060 inecmo 38336 islfl 39041 isopos 39161 psubspset 39726 islaut 40065 ispautN 40081 ltrnset 40100 isltrn 40101 istrnN 40139 istendo 40742 sticksstones1 42127 sticksstones2 42128 sticksstones3 42129 sticksstones8 42134 sticksstones10 42136 sticksstones11 42137 sticksstones12a 42138 sticksstones15 42142 sn-isghm 42659 clsk1independent 44035 sprsymrelfolem2 47417 sprsymrelfo 47421 reuopreuprim 47450 dmatALTbasel 48247 lindslinindsimp2 48308 lmod1 48337 isnrm4 48726 iscnrm4 48750 isthinc 48820 thincciso 48848 thinccisod 48849 |
Copyright terms: Public domain | W3C validator |