| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3156 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | ralbidv 3156 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: 3ralbidv 3204 6ralbidv 3206 cbvral3vw 3221 cbvral6vw 3223 cbvral3v 3344 rspc6v 3609 ralxpxfr2d 3612 poeq1 5549 soeq1 5567 isoeq1 7292 isoeq2 7293 isoeq3 7294 fnmpoovd 8066 xpord3inddlem 8133 smoeq 8319 xpf1o 9103 nqereu 10882 dedekind 11337 dedekindle 11338 seqcaopr2 14003 wrd2ind 14688 addcn2 15560 mulcn2 15562 mreexexd 17609 catlid 17644 catrid 17645 isfunc 17826 funcres2b 17859 isfull 17874 isfth 17878 fullres2c 17903 isnat 17912 evlfcl 18183 uncfcurf 18200 isprs 18257 isdrs 18262 ispos 18275 istos 18377 isdlat 18481 ismgmhm 18623 issubmgm 18629 sgrp1 18656 ismhm 18712 issubm 18730 sgrp2nmndlem4 18855 isnsg 19087 isghm 19147 isghmOLD 19148 isga 19223 pmtrdifwrdel 19415 sylow2blem2 19551 efglem 19646 efgi 19649 efgredlemb 19676 efgred 19678 frgpuplem 19702 iscmn 19719 ring1 20219 isirred 20328 rnghmval 20349 isrnghm 20350 islmod 20770 lmodlema 20771 lssset 20839 islssd 20841 islmhm 20934 islmhm2 20945 isobs 21629 dmatel 22380 dmatmulcl 22387 scmateALT 22399 mdetunilem3 22501 mdetunilem4 22502 mdetunilem9 22507 cpmatel 22598 chpscmat 22729 hausnei2 23240 dfconn2 23306 llyeq 23357 nllyeq 23358 isucn2 24166 iducn 24170 ispsmet 24192 ismet 24211 isxmet 24212 metucn 24459 ngptgp 24524 nlmvscnlem1 24574 xmetdcn2 24726 addcnlem 24753 elcncf 24782 ipcnlem1 25145 cfili 25168 c1lip1 25902 aalioulem5 26244 aalioulem6 26245 aaliou 26246 aaliou2 26248 aaliou2b 26249 ulmcau 26304 ulmdvlem3 26311 cxpcn3lem 26657 mpodvdsmulf1o 27104 dvdsmulf1o 27106 chpdifbndlem2 27465 pntrsumbnd2 27478 addsprop 27883 negsprop 27941 istrkgb 28382 axtgsegcon 28391 axtg5seg 28392 axtgpasch 28394 axtgeucl 28399 iscgrg 28439 isismt 28461 isperp2 28642 f1otrg 28798 axcontlem10 28900 axcontlem12 28902 iscusgredg 29350 isgrpo 30426 isablo 30475 vacn 30623 smcnlem 30626 lnoval 30681 islno 30682 isphg 30746 ajmoi 30787 ajval 30790 adjmo 31761 elcnop 31786 ellnop 31787 elunop 31801 elhmop 31802 elcnfn 31811 ellnfn 31812 adjeu 31818 adjval 31819 adj1 31862 adjeq 31864 cnlnadjlem9 32004 cnlnadjeu 32007 cnlnssadj 32009 isst 32142 ishst 32143 cdj1i 32362 cdj3i 32370 resspos 32892 resstos 32893 ismnt 32909 mgcval 32913 isomnd 33015 isslmd 33155 slmdlema 33156 isorng 33277 prmidlval 33408 isprmidl 33409 isrprm 33488 qqhucn 33982 ismntop 34016 axtgupdim2ALTV 34659 txpconn 35219 nn0prpw 36311 heicant 37649 equivbnd 37784 isismty 37795 heibor1lem 37803 iccbnd 37834 isass 37840 elghomlem1OLD 37879 elghomlem2OLD 37880 isrngohom 37959 iscom2 37989 pridlval 38027 ispridl 38028 isdmn3 38068 inecmo 38337 islfl 39053 isopos 39173 psubspset 39738 islaut 40077 ispautN 40093 ltrnset 40112 isltrn 40113 istrnN 40151 istendo 40754 sticksstones1 42134 sticksstones2 42135 sticksstones3 42136 sticksstones8 42141 sticksstones10 42143 sticksstones11 42144 sticksstones12a 42145 sticksstones15 42149 sn-isghm 42661 clsk1independent 44035 relpeq1 44934 relpeq2 44935 relpeq3 44936 sprsymrelfolem2 47494 sprsymrelfo 47498 reuopreuprim 47527 dmatALTbasel 48391 lindslinindsimp2 48452 lmod1 48481 isnrm4 48919 iscnrm4 48942 isuplem 49168 isthinc 49408 thincciso 49442 thinccisod 49443 |
| Copyright terms: Public domain | W3C validator |