| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3156 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | ralbidv 3156 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: 3ralbidv 3202 6ralbidv 3204 cbvral3vw 3219 cbvral6vw 3221 cbvral3v 3341 rspc6v 3606 ralxpxfr2d 3609 poeq1 5542 soeq1 5560 isoeq1 7274 isoeq2 7275 isoeq3 7276 fnmpoovd 8043 xpord3inddlem 8110 smoeq 8296 xpf1o 9080 nqereu 10858 dedekind 11313 dedekindle 11314 seqcaopr2 13979 wrd2ind 14664 addcn2 15536 mulcn2 15538 mreexexd 17589 catlid 17624 catrid 17625 isfunc 17806 funcres2b 17839 isfull 17854 isfth 17858 fullres2c 17883 isnat 17892 evlfcl 18163 uncfcurf 18180 isprs 18237 isdrs 18242 ispos 18255 istos 18357 resspos 18370 resstos 18371 isdlat 18463 ismgmhm 18605 issubmgm 18611 sgrp1 18638 ismhm 18694 issubm 18712 sgrp2nmndlem4 18837 isnsg 19069 isghm 19129 isghmOLD 19130 isga 19205 pmtrdifwrdel 19399 sylow2blem2 19535 efglem 19630 efgi 19633 efgredlemb 19660 efgred 19662 frgpuplem 19686 iscmn 19703 isomnd 20037 ring1 20230 isirred 20339 rnghmval 20360 isrnghm 20361 isorng 20781 islmod 20802 lmodlema 20803 lssset 20871 islssd 20873 islmhm 20966 islmhm2 20977 isobs 21662 dmatel 22413 dmatmulcl 22420 scmateALT 22432 mdetunilem3 22534 mdetunilem4 22535 mdetunilem9 22540 cpmatel 22631 chpscmat 22762 hausnei2 23273 dfconn2 23339 llyeq 23390 nllyeq 23391 isucn2 24199 iducn 24203 ispsmet 24225 ismet 24244 isxmet 24245 metucn 24492 ngptgp 24557 nlmvscnlem1 24607 xmetdcn2 24759 addcnlem 24786 elcncf 24815 ipcnlem1 25178 cfili 25201 c1lip1 25935 aalioulem5 26277 aalioulem6 26278 aaliou 26279 aaliou2 26281 aaliou2b 26282 ulmcau 26337 ulmdvlem3 26344 cxpcn3lem 26690 mpodvdsmulf1o 27137 dvdsmulf1o 27139 chpdifbndlem2 27498 pntrsumbnd2 27511 addsprop 27923 negsprop 27981 istrkgb 28435 axtgsegcon 28444 axtg5seg 28445 axtgpasch 28447 axtgeucl 28452 iscgrg 28492 isismt 28514 isperp2 28695 f1otrg 28851 axcontlem10 28953 axcontlem12 28955 iscusgredg 29403 isgrpo 30476 isablo 30525 vacn 30673 smcnlem 30676 lnoval 30731 islno 30732 isphg 30796 ajmoi 30837 ajval 30840 adjmo 31811 elcnop 31836 ellnop 31837 elunop 31851 elhmop 31852 elcnfn 31861 ellnfn 31862 adjeu 31868 adjval 31869 adj1 31912 adjeq 31914 cnlnadjlem9 32054 cnlnadjeu 32057 cnlnssadj 32059 isst 32192 ishst 32193 cdj1i 32412 cdj3i 32420 ismnt 32955 mgcval 32959 isslmd 33171 slmdlema 33172 prmidlval 33401 isprmidl 33402 isrprm 33481 qqhucn 33975 ismntop 34009 axtgupdim2ALTV 34652 txpconn 35212 nn0prpw 36304 heicant 37642 equivbnd 37777 isismty 37788 heibor1lem 37796 iccbnd 37827 isass 37833 elghomlem1OLD 37872 elghomlem2OLD 37873 isrngohom 37952 iscom2 37982 pridlval 38020 ispridl 38021 isdmn3 38061 inecmo 38330 islfl 39046 isopos 39166 psubspset 39731 islaut 40070 ispautN 40086 ltrnset 40105 isltrn 40106 istrnN 40144 istendo 40747 sticksstones1 42127 sticksstones2 42128 sticksstones3 42129 sticksstones8 42134 sticksstones10 42136 sticksstones11 42137 sticksstones12a 42138 sticksstones15 42142 sn-isghm 42654 clsk1independent 44028 relpeq1 44927 relpeq2 44928 relpeq3 44929 sprsymrelfolem2 47487 sprsymrelfo 47491 reuopreuprim 47520 dmatALTbasel 48384 lindslinindsimp2 48445 lmod1 48474 isnrm4 48912 iscnrm4 48935 isuplem 49161 isthinc 49401 thincciso 49435 thinccisod 49436 |
| Copyright terms: Public domain | W3C validator |