![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3175 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | ralbidv 3175 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ral 3060 |
This theorem is referenced by: 3ralbidv 3219 6ralbidv 3221 cbvral3vw 3238 cbvral6vw 3240 cbvral3v 3364 rspc6v 3630 ralxpxfr2d 3633 poeq1 5590 soeq1 5608 isoeq1 7316 isoeq2 7317 isoeq3 7318 fnmpoovd 8075 xpord3inddlem 8142 smoeq 8352 xpf1o 9141 nqereu 10926 dedekind 11381 dedekindle 11382 seqcaopr2 14008 wrd2ind 14677 addcn2 15542 mulcn2 15544 mreexexd 17596 catlid 17631 catrid 17632 isfunc 17818 funcres2b 17851 isfull 17865 isfth 17869 fullres2c 17894 isnat 17902 evlfcl 18179 uncfcurf 18196 isprs 18254 isdrs 18258 ispos 18271 istos 18375 isdlat 18479 ismgmhm 18621 issubmgm 18627 sgrp1 18654 ismhm 18707 issubm 18720 sgrp2nmndlem4 18845 isnsg 19071 isghm 19130 isga 19196 pmtrdifwrdel 19394 sylow2blem2 19530 efglem 19625 efgi 19628 efgredlemb 19655 efgred 19657 frgpuplem 19681 iscmn 19698 ring1 20198 isirred 20310 rnghmval 20331 isrnghm 20332 islmod 20618 lmodlema 20619 lssset 20688 islssd 20690 islmhm 20782 islmhm2 20793 isobs 21494 dmatel 22215 dmatmulcl 22222 scmateALT 22234 mdetunilem3 22336 mdetunilem4 22337 mdetunilem9 22342 cpmatel 22433 chpscmat 22564 hausnei2 23077 dfconn2 23143 llyeq 23194 nllyeq 23195 isucn2 24004 iducn 24008 ispsmet 24030 ismet 24049 isxmet 24050 metucn 24300 ngptgp 24365 nlmvscnlem1 24423 xmetdcn2 24573 addcnlem 24600 elcncf 24629 ipcnlem1 24993 cfili 25016 c1lip1 25749 aalioulem5 26085 aalioulem6 26086 aaliou 26087 aaliou2 26089 aaliou2b 26090 ulmcau 26143 ulmdvlem3 26150 cxpcn3lem 26491 dvdsmulf1o 26934 chpdifbndlem2 27293 pntrsumbnd2 27306 addsprop 27698 negsprop 27748 istrkgb 27973 axtgsegcon 27982 axtg5seg 27983 axtgpasch 27985 axtgeucl 27990 iscgrg 28030 isismt 28052 isperp2 28233 f1otrg 28389 axcontlem10 28498 axcontlem12 28500 iscusgredg 28947 isgrpo 30017 isablo 30066 vacn 30214 smcnlem 30217 lnoval 30272 islno 30273 isphg 30337 ajmoi 30378 ajval 30381 adjmo 31352 elcnop 31377 ellnop 31378 elunop 31392 elhmop 31393 elcnfn 31402 ellnfn 31403 adjeu 31409 adjval 31410 adj1 31453 adjeq 31455 cnlnadjlem9 31595 cnlnadjeu 31598 cnlnssadj 31600 isst 31733 ishst 31734 cdj1i 31953 cdj3i 31961 resspos 32403 resstos 32404 ismnt 32420 mgcval 32424 isomnd 32489 isslmd 32617 slmdlema 32618 isorng 32687 prmidlval 32829 isprmidl 32830 isrprm 32908 qqhucn 33270 ismntop 33304 axtgupdim2ALTV 33978 txpconn 34521 nn0prpw 35511 heicant 36826 equivbnd 36961 isismty 36972 heibor1lem 36980 iccbnd 37011 isass 37017 elghomlem1OLD 37056 elghomlem2OLD 37057 isrngohom 37136 iscom2 37166 pridlval 37204 ispridl 37205 isdmn3 37245 inecmo 37527 islfl 38233 isopos 38353 psubspset 38918 islaut 39257 ispautN 39273 ltrnset 39292 isltrn 39293 istrnN 39331 istendo 39934 sticksstones1 41268 sticksstones2 41269 sticksstones3 41270 sticksstones8 41275 sticksstones10 41277 sticksstones11 41278 sticksstones12a 41279 sticksstones15 41283 clsk1independent 43099 sprsymrelfolem2 46459 sprsymrelfo 46463 reuopreuprim 46492 dmatALTbasel 47170 lindslinindsimp2 47231 lmod1 47260 isnrm4 47650 iscnrm4 47674 isthinc 47728 thincciso 47756 |
Copyright terms: Public domain | W3C validator |